Skip to Main Content

Boatwright Memorial Library

Science Seminars Guide

Many of the Science Departments have a related Seminar course with multiple presentations throughout the semester. This guide serves as a launching point for students to dig deeper into the resources related to some of those presentations.

Spring 2024 Biology Presentations

These presentations come from the Biology Seminar Series. For more information on the Seminar Series check out https://biology.richmond.edu/academics/seminar-series.html

Under each presentation:

 you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for Biology Seminar Presentations

*Zotero Folder reflects updates quickest*

From genomes to genes: Studying evolutionary change in humans and fruit flies
- Dr. Melinda Yang

  1. 1000 Genomes | A Deep Catalog of Human Genetic Variation. https://www.internationalgenome.org/
  2. Alvarez-Ponce D, Aguadé M, Rozas J. Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Research. 2009;19(2):234–242. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1101_gr_084038_108. doi:10.1101/gr.084038.108
  3. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, Chen Y, Felkel S, Hallast P, Kamm J, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science (New York, N.Y.). 2020;367(6484):eaay5012. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7115999. doi:10.1126/science.aay5012
  4. Drosophila. In: Wikipedia. 2024. https://en.wikipedia.org/w/index.php?title=Drosophila&oldid=1194363082
  5. Edenberg HJ. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol Research & Health. 2007;30(1):5–13. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3860432
  6. Fergus K. An Overview of Karyotyping: Karyotype’s Role in Diagnosis and Prenatal and Predictive Screening. Verywell Health. 2023 Oct 4. https://www.verywellhealth.com/what-is-a-karyotype-1120441
  7. Home. Genomics Education Partnership. https://thegep.org/
  8. Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences----Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. http://english.ivpp.cas.cn/au/bi/
  9. Jordan IK, Rishishwar L, Conley AB. Native American admixture recapitulates population-specific migration and settlement of the continental United States. PLOS Genetics. 2019;15(9):e1008225. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_2306307117. doi:10.1371/journal.pgen.1008225
  10. Liu C-C, Witonsky D, Gosling A, Lee JH, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M, et al. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nature Communications. 2022;13(1):1203. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_61122a4e43114b49978e97fe29f04c07. doi:10.1038/s41467-022-28827-2
  11. Marshall VJ, Ramchandani VA, Kalu N, Kwagyan J, Scott DM, Ferguson CL, Taylor RE. Evaluation of the Influence of Alcohol Dehydrogenase Polymorphisms on Alcohol Elimination Rates in African Americans. Alcoholism: Clinical and Experimental Research. 2014;38(1):51–59. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1111_acer_12212. doi:10.1111/acer.12212
  12. McQuillan MA, Ranciaro A, Hansen MEB, Fan S, Beggs W, Belay G, Woldemeskel D, Tishkoff SA. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans. Molecular Biology and Evolution. 2022;39(10):msac183. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1093_molbev_msac183. doi:10.1093/molbev/msac183
  13. NCBI. Drosophila. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7215&lvl=3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock
  14. Peng Y, Shi H, Qi X, Xiao C, Zhong H, Ma RZ, Su B. The ADH1B Arg47His polymorphism in East Asian populations and expansion of rice domestication in history. BMC Evolutionary Biology. 2010;10(1):15. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_63aedad78f404272b6c50b3ba75c5e1a. doi:10.1186/1471-2148-10-15
  15. Rele CP, Williams J, Reed LK, Youngblom JJ, Leung W. Drosophila grimshawi – Rheb. microPublication Biology. 2021. https://www.micropublication.org/journals/biology/micropub-biology-000371. doi:10.17912/micropub.biology.000371
  16. Tianjiao Y. Biodiversity of Yunnan Province. Global Times. 2021 Jun 16. https://www.globaltimes.cn/page/202106/1226238.shtml
  17. Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, et al. Human genetic history on the Tibetan Plateau in the past 5100 years. Science Advances. 2023;9(11):eadd5582. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1126_sciadv_add5582. doi:10.1126/sciadv.add5582
  18. Wang M, Wang Q, Wang Z, Wang Q, Zhang X, Pan Y. The Molecular Evolutionary Patterns of the Insulin/FOXO Signaling Pathway. Evolutionary Bioinformatics Online. 2013;9:1–16. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_73cea8f11cab402a8b267bdb9cb7144d. doi:10.4137/EBO.S10539
  19. Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R, et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell. 2021;184(14):3829-3841.e21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2545595560. doi:10.1016/j.cell.2021.05.018
  20. Wiberg DA, Strzepek K. Development of Regional Economic Supply Curves for Surface Water Resources and Climate Change Assessments: A Case Study of China. nternational Institute for Applied Systems Analysis; 2005. Report No.: RR-05-001. https://www.researchgate.net/publication/265157888_Development_of_Regional_Economic_Supply_Curves_for_Surface_Water_Resources_and_Climate_Change_Assessments_A_Case_Study_of_China
  21. Yan C, Tadadej C, Chamroonsawasdi K, Chansatitporn N, Sung JF. Ethnic Disparities in Utilization of Maternal and Child Health Services in Rural Southwest China. International Journal of Environmental Research and Public Health. 2020;17(22):8610. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_3390_ijerph17228610. doi:10.3390/ijerph17228610
  22. Yang MA, Fan X, Sun B, Chen C, Lang J, Ko Y-C, Tsang C, Chiu H, Wang T, Bao Q, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science. 2020;369(6501):282–288. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2404042277. doi:10.1126/science.aba0909
  23. Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, Slatkin M, Meyer M, Pääbo S, Kelso J, et al. 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology. 2017;27(20):3202-3208.e9. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_cub_2017_09_030. doi:10.1016/j.cub.2017.09.03

Why have linear chromosomes? Genetically engineering circular telomere-free eukaryotic chromosomes
- Dr. Melissa Mefford

  1. Fica SM, Mefford MA, Piccirilli JA, Staley JP. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nature structural & molecular biology. 2014;21(5):464–471. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4257784. doi:10.1038/nsmb.2815
  2. Hamilton T, Mefford MA. Challenges in creating circularized versions of linear chromosomes. 2023. https://scholarworks.moreheadstate.edu/celebration_posters_2023/5
  3. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022;12(1):31–46. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1158_2159_8290_cd_21_1059. doi:10.1158/2159-8290.CD-21-1059
  4. Klar AJ, Strathern JN, Hicks JB, Prudente D. Efficient Production of a Ring Derivative of Chromosome III by the Mating-Type Switching Mechanism in Saccharomyces cerevisiae. Molecular and Cellular Biology. 1983;3(5):803–810. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1128_mcb_3_5_803. doi:10.1128/mcb.3.5.803-810.1983
  5. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2761182543. doi:10.1016/j.cell.2022.11.001
  6. Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. The EMBO Journal. 2013;32(22):2980–2993. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_emboj_2013_227. doi:10.1038/emboj.2013.227
  7. Mefford MA, Zappulla DC. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity. Molecular and Cellular Biology. 2016;36(2):251–261. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1128_mcb_00794_15. doi:10.1128/MCB.00794-15
  8. Naito T, Matsuura A, Ishikawa F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genetics. 1998;20(2):203. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_69963149. doi:10.1038/2517
  9. Saccharomyces cerevisiae. In: Wikipédia. 2024. https://fr.wikipedia.org/w/index.php?title=Saccharomyces_cerevisiae&oldid=211742824
  10. Shao Y, Lu N, Cai C, Zhou F, Wang S, Zhao Z, Zhao G, Zhou J-Q, Xue X, Qin Z. A single circular chromosome yeast. Cell Research. 2019;29(1):87–89. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_s41422_018_0110_y. doi:10.1038/s41422-018-0110-y

Identification of therapeutic vulnerabilities in stem cells in myeloid neoplasms
- Dr. Christopher Park

  1. Brown G, Marcinkowska E. The Biology and Treatment of Myeloid Leukaemias. Basel, Switzerland: MDPI; 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_oapen_doabooks_42238
  2. Bryder D, Rossi DJ, Weissman IL. Hematopoietic Stem Cells. The American Journal of Pathology. 2006;169(2):338–346. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_lup_lub_lu_se_8e4f6808_4965_4664_9242_eb273a7bc4c4.
  3. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation. Dillin A, editor. PLoS Biology. 2007;5(8):e201. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_1291912242.
  4. Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood. 2008;111(12):5553–5561. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_2007_11_123547.
  5. Christopher Park Lab. NYU Langone Medical Center. https://chrisparklab.com/
  6. Chung SS, Eng WS, Hu W, Khalaj M, Garrett-Bakelman FE, Tavakkoli M, Levine RL, Carroll M, Klimek VM, Melnick AM, et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Science Translational Medicine. 2017;9(374):eaaj2025. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1126_scitranslmed_aaj2025.
  7. Duchmann M, Itzykson R. Clinical update on hypomethylating agents. International Journal of Hematology. 2019;110(2):161–169. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1007_s12185_019_02651_9
  8. Dykstra B, Olthof S, Schreuder J, Ritsema M, De Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. Journal of Experimental Medicine. 2011;208(13):2691–2703. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244040.
  9. Farrell TL, McGuire TR, Bilek LD, Brusnahan SK, Jackson JD, Lane JT, Garvin KL, O’Kane BJ, Berger AM, Tuljapurkar SR, et al. Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site. Experimental Hematology. 2014;42(2):146–154. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3944726.
  10. Fuchs O, editor. Myelodysplastic Syndromes. InTech; 2016. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928398266006241.
  11. Fuchs O, editor. Recent Developments in Myelodysplastic Syndromes. IntechOpen; 2019. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928397750506241.
  12. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. New England Journal of Medicine. 2014;371(26):2477–2487. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_prod_swepub_kib_ki_se_130364140.
  13. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120(12):2454–2465. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_2012_03_420489.
  14. Harrison DE, Astle CM, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. The Journal of Immunology. 1989;142(11):3833–3840. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_4049_jimmunol_142_11_3833.
  15. Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology. 2017;7:286. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_aacca2d4c578442b80970ca809c788d9.
  16. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine. 2014;371(26):2488–2498. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1056_nejmoa1408617.
  17. Liang R, Arif T, Kalmykova S, Kasianov A, Lin M, Menon V, Qiu J, Bernitz JM, Moore K, Lin F, et al. Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell. 2020;26(3):359-376.e7. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2020_01_013
  18. Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. Journal of Cell Biology. 2011;193(2):257–266. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3080271
  19. Majeti R, Park CY, Weissman IL. Identification of a Hierarchy of Multipotent Hematopoietic Progenitors in Human Cord Blood. Cell Stem Cell. 2007;1(6):635–645. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2007_10_001
  20. Mansell E, Sigurdsson V, Deltcheva E, Brown J, James C, Miharada K, Soneji S, Larsson J, Enver T. Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. Cell Stem Cell. 2021;28(2):241-256.e6. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2020_09_018
  21. Martin GH, Roy N, Chakraborty S, Desrichard A, Chung SS, Woolthuis CM, Hu W, Berezniuk I, Garrett-Bakelman FE, Hamann J, et al. CD97 is a critical regulator of acute myeloid leukemia stem cell function. Journal of Experimental Medicine. 2019;216(10):2362–2377. https://doi.org/10.1084/jem.20190598.
  22. McGowan KA, Pang WW, Bhardwaj R, Perez MG, Pluvinage JV, Glader BE, Malek R, Mendrysa SM, Weissman IL, Park CY, et al. Reduced ribosomal protein gene dosage and p53 activation in low-risk myelodysplastic syndrome. Blood. 2011;118(13):3622–3633. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3186336.
  23. Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood. 2002;100(4):1302–1309. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_v100_4_1302_h81602001302_1302_1309.
  24. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences. 2011;108(50):20012–20017. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_911941323
  25. Ramalingam P, Poulos MG, Lazzari E, Gutkin MC, Lopez D, Kloss CC, Crowley MJ, Katsnelson L, Freire AG, Greenblatt MB, et al. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications. 2020;11(1):666. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6b54770221c34086b376c539aef6277a
  26. Rodriguez-Fraticelli AE, Weinreb C, Wang S-W, Migueles RP, Jankovic M, Usart M, Klein AM, Lowell S, Camargo FD. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature. 2020;583(7817):585–589. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579674.
  27. Romero LA, Hattori T, Ali MAE, Ketavarapu G, Koide A, Park CY, Koide S. High-valency Anti-CD99 Antibodies Toward the Treatment of T Cell Acute Lymphoblastic Leukemia. Journal of Molecular Biology. 2022;434(5):167402. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_jmb_2021_167402
  28. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–729. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_lup_lub_lu_se_fdf8a23e_6527_467b_a157_ba8c8d7d5272
  29. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences. 2005;102(26):9194–9199. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1073_pnas_0503280102
  30. Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. Journal of Experimental Medicine. 2014;211(2):217–231. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1084_jem_20131128
  31. Sudo K, Ema H, Morita Y, Nakauchi H. Age-Associated Characteristics of Murine Hematopoietic Stem Cells. The Journal of Experimental Medicine. 2000;192(9):1273–1280. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2193349
  32. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Laboratory Investigation. 2006;86(12):1203–1207. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68171745
  33. Van Zant G, Holland BP, Eldridge PW, Chen JJ. Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. The Journal of Experimental Medicine. 1990;171(5):1547–1565. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2187897
  34. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine. 2014;20(12):1472–1478. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4313872

Impacts of disturbance on marine mammals: Physiological and behavioral responses to stressors
- Gitte McDonald

  1. Bernaldo De Quirós Y, Fernandez A, Baird RW, Brownell RL, Aguilar De Soto N, Allen D, Arbelo M, Arregui M, Costidis A, Fahlman A, et al. Advances in research on the impacts of anti-submarine sonar on beaked whales. Proceedings of the Royal Society B: Biological Sciences. 2019;286(1895):20182533. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_jstor_primary_26631166.
  2. Doughty CE, Roman J, Faurby S, Wolf A, Haque A, Bakker ES, Malhi Y, Dunning JB, Svenning J-C. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences. 2016;113(4):868–873. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_1765603575.
  3. García-Párraga D, Crespo-Picazo J, De Quirós Y, Cervera V, Martí-Bonmati L, Díaz-Delgado J, Arbelo M, Moore M, Jepson P, Fernández A. Decompression sickness (‘the bends’) in sea turtles. Diseases of Aquatic Organisms. 2014;111(3):191–205. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1787958428.
  4. Gulf Watch Alaska: The Mystery of THE BLOB: Investigation. Alaska Sealife Center. https://www.alaskasealife.org/gulfwatchblobvft_investigation
  5. Hindell MA. Elephant Seals. In: Encyclopedia of Marine Mammals. 3rd ed. Elsevier; 2018. p. 303–307. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_elsevier_sciencedirect_doi_10_1016_B978_0_12_804327_1_00115_1
  6. Jobsis PD, Ponganis PJ, Kooyman GL. Effects of training on forced submersion responses in harbor seals. Journal of Experimental Biology. 2001;204(22):3877–3885. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_72413023.
  7. Kooyman GL, McDonald BI, Williams CL, Meir JU, Ponganis PJ. The aerobic dive limit: After 40 years, still rarely measured but commonly used. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2021;252:110841. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_cbpa_2020_110841.
  8. Larson SE, Bodkin JL, VanBlaricom GR. Sea otter conservation. London, UK San Diego, CA, USA: Academic Press is an imprint of Elsevier; 2015. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928389093206241
  9. McLeish T. Return of the sea otter: the story of the animal that evaded extinction on the Pacific Coast. Seattle: Sasquatch Books; 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9924926293606241
  10. Moss Landing Marine Laboratories. San José State University. https://mlml.sjsu.edu/
  11. Oftedal OT, Ralls K, Tinker MT, Green A. NUTRITIONAL CONSTRAINTS ON THE SOUTHERN SEA OTTER IN THE MONTEREY BAY NATIONAL MARINE SANCTUARY  and a comparison to sea otter populations at San Nicolas Island, California and Glacier Bay, Alaska. Monterey Bay National Marine Sanctuary; 2007. https://sanctuarysimon.org/dbtools/project-database/index.php?ID=100263
  12. Peterson SH, Ackerman JT, Holser RR, McDonald BI, Costa DP, Crocker DE. Mercury Bioaccumulation and Cortisol Interact to Influence Endocrine and Immune Biomarkers in a Free-Ranging Marine Mammal. Environmental Science & Technology. 2023;57(14):5678–5692. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2792905979.
  13. Ravalli R. Sea otters: a history. Lincoln: University of Nebraska Press; 2018. (Studies in Pacific worlds). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9926514493606241
  14. Sea Otter Savvy. Sea Otter Savvy. https://www.seaottersavvy.org/
  15. Shirihai H, Jarrett B, Kirwan GM. Whales, dolphins, and other marine mammals of the world. Princeton, N.J: Princeton University Press; 2006. (Princeton field guides). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9910236373606241
  16. Soundcheck: Ocean noise. National Oceanic and Atmospheric Administration. https://www.noaa.gov/explainers/soundcheck-ocean-noise
  17. Wikelski M. I.2 Physiological Ecology: Animals. In: Levin SA, Carpenter SR, Godfray HCJ, Kinzig AP, Loreau M, Losos JB, Walker B, Wilcove DS, editors. The Princeton Guide to Ecology. Princeton: Princeton University Press; 2009. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_walterdegruyter_books_10_1515_9781400833023_1

Lesson from and about Plants: Transducing a career
- Beronda Montgomery

  1. Mazzella MA, Casal JJ, Muschietti JP, Fox AR. Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science. 2014;5. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_a838c7750258422dbd226d68b8497295.
  2. Montgomery B. Lessons from Plants. Harvard University Press; 2021. https://newman.richmond.edu/login?url=https://www.jstor.org/stable/j.ctv33wwtpr
  3. Montgomery B, Sancheznieto F, Dahlberg ML. Academic Mentorship Needs a More Scientific Approach. Issues in Science and Technology. 2022;38(4):84–87. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2695111304
  4. Montgomery BL. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integrative And Comparative Biology. 2023;63(6):1391–1398. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2854967635
  5. Montgomery BL. From Deficits to Possibilities: Mentoring Lessons from Plants on Cultivating Individual Growth through Environmental Assessment and Optimization. Public Philosophy Journal. 2018;1(1). doi:https://doi.org/10.25335/M5/PPJ.1.1-3
  6. Montgomery BL. Planting Equity: Using What We Know to Cultivate Growth as a Plant Biology Community. The Plant Cell. 2020;32(11):3372–3375. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1105_tpc_20_00589
  7. Montgomery BL. Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiology and Molecular Biology Reviews. 2022;86(3):e00106-21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9491170
  8. Montgomery BL. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back. Frontiers in Plant Science. 2016;7. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_76da20ad2d954f58b71910d32b4e134f.
  9. Packard BW-L, Montgomery BL, Mondisa J-L. Taking stock of campus mentoring ecosystems: a peer assessment dialogue exercise. International Journal of Mentoring and Coaching in Education. 2024;13(1):17–33. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_emerald_primary_10_1108_IJMCE-09-2022-0072.
  10. Pattanaik B, Whitaker MJ, Montgomery BL. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon. Frontiers in Microbiology. 2012;3. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_573ebe98a15e40509b0824054078e1ec
  11. Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Frontiers in Microbiology. 2021;12:819604. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_0de541bd08ce48508a93e89d6356435a.
  12. Timmermans MCP. Plant development. 1st ed. San Diego, CA: Academic Press; 2010. (Current topics in developmental biology). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928073529706241
  13. Van Gelderen K, Kang C, Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiology. 2018;176(2):1049–1060. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1104_pp_17_01079.
  14. Wada M, Nihon Shokubutsu Gakkai, editors. Light sensing in plants. Tokyo Berlin Heidelberg: Springer; 2005. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_askewsholts_vlebooks_9784431270928

City Rats in 3 Acts: From global trends in disease risk to local population ecology
- Jonathan Richardson

  1. Avilés-Rodríguez K, Hughes K, Richardson JL, Munshi-South J. Integrating Molecular Methods with a Social-Ecological Focus to Advance Urban Biodiversity Management. In: Lambert M, Schell C, editors. Urban Biodiversity and Equity: Justice-Centered Conservation in Cities. Oxford University Press; 2023. p. 0. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928482632406241. doi:10.1093/oso/9780198877271.003.0009
  2. Jacob J, Watanabe S, Richardson J, Gonzales N, Ploppert E, Lahvis G, Shiels A, Wenger S, Saverino K, Bhalerao J, et al. Divergent neural and endocrine responses in wild-caught and laboratory-bred Rattus norvegicus. Behavioural Brain Research. 2022;432:113978. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2681441469. doi:10.1016/j.bbr.2022.113978
  3. Jonathan Richardson’s Lab. University of Richmond. n.d. https://biology.richmond.edu/research/research-labs/richardson-lab.html
  4. NCBI. Rattus norvegicus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116&lvl=3&lin=f&keep=1&srchmode=1&unlock
  5. NCBI. Rattus rattus. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10117&lvl=3&lin=f&keep=1&srchmode=1&unlock
  6. Parsons MH, Richardson JL, Kiyokawa Y, Stryjek R, Corrigan RM, Deutsch MA, Ootaki M, Tanikawa T, Parsons FE, Munshi-South J. Rats and the COVID-19 pandemic: considering the influence of social distancing on a global commensal pest. Journal of Urban Ecology. 2021;7(1):juab027. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8500081. doi:10.1093/jue/juab027
  7. Richardson JL, Michaelides S, Combs M, Djan M, Bisch L, Barrett K, Silveira G, Butler J, Aye TT, Munshi-South J, et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evolutionary Applications. 2021;14(1):163–177. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_335dbf9d93b7490abdf893607de5c20a. doi:10.1111/eva.13133
  8. Schell CJ, Dyson K, Fuentes TL, Des Roches S, Harris NC, Miller DS, Woelfle-Erskine CA, Lambert MR. The ecological and evolutionary consequences of systemic racism in urban environments. Science. 2020;369(6510):eaay4497. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2434486014. doi:10.1126/science.aay4497

Ecological Connectivity and the Impacts of Climate Change in Coastal Ecosystems of the South Atlantic Bight
- Leslie Townsell

  1. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, et al. Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1554):2897–2912. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_755139828. doi:10.1098/rstb.2010.0170
  2. Centralized Data Management Office. National Estuarine Research Reserve System. https://cdmo.baruch.sc.edu/
  3. Feely R, Doney S, Cooley S. Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World. Oceanography. 2009;22(4):36–47. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_38cb117772004ff1890f6cc70d008069. doi:10.5670/oceanog.2009.95
  4. Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, Bush SR, Cao L, Gelcich S, Gephart JA, et al. Blue food demand across geographic and temporal scales. Nature Communications. 2021;12(1):5413. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_8b46530ae29f4fdf8139b3bf32bd5553. doi:10.1038/s41467-021-25516-4
  5. NCBI. Carcharhinus plumbeus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  6. NCBI. Crassostrea virginica. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  7. NCBI. Rhizoprionodon terraenovae. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  8. NCBI. Sphyrna tiburo. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7824&lvl=3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock
  9. Ray NE, Maguire TJ, Al-Haj AN, Henning MC, Fulweiler RW. Low Greenhouse Gas Emissions from Oyster Aquaculture. Environmental Science & Technology. 2019;53(15):9118–9127. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2257694665. doi:10.1021/acs.est.9b02965
  10. Shell Recycling. Town & County of Nantucket Massachusetts. 2020 Feb 13. https://www.nantucket-ma.gov/1425/Shell-Recycling-Program
  11. Water Quality. Sapelo Island National Estuarine Research Reserve. n.d. https://sapelonerr.org/research-monitoring/water-quality-monitoring

Decoding GLP1R Agonists like Ozempic: Mechanisms of Next Generation Therapeutics on Appetite Control
- Lizzie Godschall

  1. GLP1R glucagon-like peptide 1 receptor [Homo sapiens (human)]. GENE: NCBI. n.d. [accessed 2024 Apr 23]. https://www.ncbi.nlm.nih.gov/gene/2740
  2. Glp1r glucagon-like peptide 1 receptor [Mus musculus (house mouse)]. GENE: NCBI. n.d. [accessed 2024 Apr 23]. https://www.ncbi.nlm.nih.gov/gene/14652
  3. Kawai T, Sun B, Yoshino H, Feng D, Suzuki Y, Fukazawa M, Nagao S, Wainscott DB, Showalter AD, Droz BA, et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proceedings of the National Academy of Sciences. 2020 [accessed 2024 Apr 23];117(47):29959–29967. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703558. doi:10.1073/pnas.2014879117
  4. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 [accessed 2024 Apr 23];518(7538):197–206. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_prod_swepub_kib_ki_se_130690386. doi:10.1038/nature1417

Fertility in flux? Assessing the evolution of reproductive traits in an invasive fruit fly
- Ansleigh Gunter

  1. NCBI. Zaprionus indianus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  2. Rakes LM, Delamont M, Cole C, Yates JA, Blevins LJ, Hassan FN, Bergland AO, Erickson PA. A small survey of introduced Zaprionus indianus (Diptera: Drosophilidae) in orchards of the eastern United States. Journal of Insect Science. 2023;23(5):21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10590155. doi:10.1093/jisesa/iead092
  3. The Methods We’re Using. The Walter Lab. 2020. https://www.walter-lab.com/methods

Do parasitoid wasps affect the competitive success of an invasive fruit fly?
- Camille Walsh-Antzak

  1. Commar LS, Galego LG da C, Ceron CR, Carareto CMA. Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genetics and Molecular Biology. 2012;35:395–406. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6de0f32735604d5596584a48a3b6006b. doi:10.1590/S1415-47572012000300003
  2. NCBI. Leptopilina heterotoma. Taxonomy Browser. n.d.. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=63436
  3. NCBI. Zaprionus indianus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  4. Rakes LM, Delamont M, Cole C, Yates JA, Blevins LJ, Hassan FN, Bergland AO, Erickson PA. A small survey of introduced Zaprionus indianus (Diptera: Drosophilidae) in orchards of the eastern United States. Journal of Insect Science. 2023;23(5):21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10590155. doi:10.1093/jisesa/iead092
  5. Ziska LH, editor. Invasive species and global climate change. Second edition. Wallingford, Oxfordshire, UK ; CABI; 2023. (CABI Invasives). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma992838647030624

EndoEcho: Amplifying awareness of endometriosis
- Lesley Boadu

  1. Aliabadi T. Endometriosis: Symptoms and Advanced Treatments. Thaïs Aliabadi, MD Obstetrics, Gynecology & Infertility. [accessed 2024 Apr 23]. https://www.draliabadi.com/gynecology/endometriosis/
  2. Alimi Y, Iwanaga J, Loukas M, Tubbs RS. The Clinical Anatomy of Endometriosis: A Review. Cureus. [accessed 2024 Apr 23];10(9):e3361. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6257623. doi:10.7759/cureus.3361
  3. Attia GR, Zeitoun K, Edwards D, Johns A, Carr BR, Bulun SE. Progesterone Receptor Isoform A But Not B Is Expressed in Endometriosis1. The Journal of Clinical Endocrinology & Metabolism. 2000 [accessed 2024 Apr 23];85(8):2897–2902. https://doi.org/10.1210/jcem.85.8.6739. doi:10.1210/jcem.85.8.6739
  4. Marsh C. Endometriosis / edited by Courtney Marsh. London: IntechOpen; 2021. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928444234706241
  5. Nezhat C, Nezhat F, Nezhat C. Endometriosis: ancient disease, ancient treatments. Fertility and Sterility. 2012 [accessed 2024 Apr 23];98(6, Supplement):S1–S62. (Endometriosis: ancient disease,ancient treatments). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1222233570. doi:10.1016/j.fertnstert.2012.08.001
  6. Orlando MS, Luna Russo MA, Richards EG, King CR, Park AJ, Bradley LD, Chapman GC. Racial and ethnic disparities in surgical care for endometriosis across the United States. American Journal of Obstetrics and Gynecology. 2022;226(6):824.e1-824.e11. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2624660131. doi:10.1016/j.ajog.2022.01.02

Biology Seminar Presentations Archives

Over the following tabs, you will find the Biology Seminar listings from previous semesters. 

Structure-function relationships in biochemistry: exploring ly6 function in lab and curricular change in the classroom
- Dr. Rou-Jia Sung, Carleton College

Identification of therapeutic vulnerabilities in stem cells in myeloid neoplasms
- Dr. Christopher Park, NYU Grossman School of Medicine

Please note this presentation was canceled

Archaic introgression in modern humans: What it can tell us about archaic humans and about ourselves
- Dr. Fernando Villanea Guevara, University of Colorado Boulder

The interplay between science and management of Hawaiian dolphins & whales
- Robin Baird, Cascadia Research Collective

Global change insights from reptile and amphibian genomes
- Arianna Kuhn, Assistant Curator of Herpetology, Virginia Museum of Natural History

Plant Conservation in Action: Utilizing research, collections, and advocacy to address the plant extinction crisis
- Naomi Fraga, California Botanic Garden

Was unfortunately unable to attend this presentation. If a student or staff member would like to share their notes on this presentation to facilitate resource inclusion, please reach out to the Science Librarian.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.