Skip to Main Content

Boatwright Memorial Library

Spring 2025 Biology Presentations

These presentations come from the Biology Seminar Series. For more information on the Seminar Series check out https://biology.richmond.edu/academics/seminar-series.html

Under each presentation:

 you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for Biology Seminar Presentations

*Zotero Folder reflects updates quickest*

Rearing Invasive Forest Insects for Biocontrol and Spread Management

- Dr. Kristine GraysonJanuary 13, 2025 ▼

  1. Coming Soon

Viruses and Their Place in the Tree of Life

- Dr. Eugene WuJanuary 27, 2025 ▼

  1. Coming Soon

Environmental Impacts on Songbird Brains and Behavior

- Dr. Kendra SewallFebruary 3, 2025 ▼

  1. Coming Soon

Title to be Determined

- Matt CowanFebruary 10, 2025 ▼

  1. Coming Soon

Title to be Determined

- Dr. Dan PierceFebruary 17, 2025 ▼

  1. Coming Soon

Chromatin Regulation in C. Elegans

- Dr. Deborah Thurtle-SchmidtFebruary 24, 2025 ▼

  1. Coming Soon

Title to be Determined

- Devon FitzgeraldMarch 3, 2025 ▼

  1. Coming Soon

How Do Nature and Nurture Shape the Developing Brain?

- Saumya JainMarch 17, 2025 ▼

  1. Coming Soon

Honors Student Presentation

- TBDMarch 24, 2025 ▼

  1. Coming Soon

Biology Seminar Presentations Archives

Over the following tabs, you will find the Biology Seminar listings from previous semesters. 

Structure-function relationships in biochemistry: exploring ly6 function in lab and curricular change in the classroom
- Dr. Rou-Jia Sung, Carleton College

Identification of therapeutic vulnerabilities in stem cells in myeloid neoplasms
- Dr. Christopher Park, NYU Grossman School of Medicine

Please note this presentation was canceled

Archaic introgression in modern humans: What it can tell us about archaic humans and about ourselves
- Dr. Fernando Villanea Guevara, University of Colorado Boulder

The interplay between science and management of Hawaiian dolphins & whales
- Robin Baird, Cascadia Research Collective

Global change insights from reptile and amphibian genomes
- Arianna Kuhn, Assistant Curator of Herpetology, Virginia Museum of Natural History

Plant Conservation in Action: Utilizing research, collections, and advocacy to address the plant extinction crisis
- Naomi Fraga, California Botanic Garden

Was unfortunately unable to attend this presentation. If a student or staff member would like to share their notes on this presentation to facilitate resource inclusion, please reach out to the Science Librarian.

From genomes to genes: Studying evolutionary change in humans and fruit flies
- Dr. Melinda Yang

  1. 1000 Genomes | A Deep Catalog of Human Genetic Variation. https://www.internationalgenome.org/
  2. Alvarez-Ponce D, Aguadé M, Rozas J. Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Research. 2009;19(2):234–242. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1101_gr_084038_108. doi:10.1101/gr.084038.108
  3. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, Chen Y, Felkel S, Hallast P, Kamm J, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science (New York, N.Y.). 2020;367(6484):eaay5012. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7115999. doi:10.1126/science.aay5012
  4. Drosophila. In: Wikipedia. 2024. https://en.wikipedia.org/w/index.php?title=Drosophila&oldid=1194363082
  5. Edenberg HJ. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol Research & Health. 2007;30(1):5–13. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3860432
  6. Fergus K. An Overview of Karyotyping: Karyotype’s Role in Diagnosis and Prenatal and Predictive Screening. Verywell Health. 2023 Oct 4. https://www.verywellhealth.com/what-is-a-karyotype-1120441
  7. Home. Genomics Education Partnership. https://thegep.org/
  8. Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences----Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. http://english.ivpp.cas.cn/au/bi/
  9. Jordan IK, Rishishwar L, Conley AB. Native American admixture recapitulates population-specific migration and settlement of the continental United States. PLOS Genetics. 2019;15(9):e1008225. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_2306307117. doi:10.1371/journal.pgen.1008225
  10. Liu C-C, Witonsky D, Gosling A, Lee JH, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M, et al. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nature Communications. 2022;13(1):1203. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_61122a4e43114b49978e97fe29f04c07. doi:10.1038/s41467-022-28827-2
  11. Marshall VJ, Ramchandani VA, Kalu N, Kwagyan J, Scott DM, Ferguson CL, Taylor RE. Evaluation of the Influence of Alcohol Dehydrogenase Polymorphisms on Alcohol Elimination Rates in African Americans. Alcoholism: Clinical and Experimental Research. 2014;38(1):51–59. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1111_acer_12212. doi:10.1111/acer.12212
  12. McQuillan MA, Ranciaro A, Hansen MEB, Fan S, Beggs W, Belay G, Woldemeskel D, Tishkoff SA. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans. Molecular Biology and Evolution. 2022;39(10):msac183. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1093_molbev_msac183. doi:10.1093/molbev/msac183
  13. NCBI. Drosophila. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7215&lvl=3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock
  14. Peng Y, Shi H, Qi X, Xiao C, Zhong H, Ma RZ, Su B. The ADH1B Arg47His polymorphism in East Asian populations and expansion of rice domestication in history. BMC Evolutionary Biology. 2010;10(1):15. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_63aedad78f404272b6c50b3ba75c5e1a. doi:10.1186/1471-2148-10-15
  15. Rele CP, Williams J, Reed LK, Youngblom JJ, Leung W. Drosophila grimshawi – Rheb. microPublication Biology. 2021. https://www.micropublication.org/journals/biology/micropub-biology-000371. doi:10.17912/micropub.biology.000371
  16. Tianjiao Y. Biodiversity of Yunnan Province. Global Times. 2021 Jun 16. https://www.globaltimes.cn/page/202106/1226238.shtml
  17. Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, et al. Human genetic history on the Tibetan Plateau in the past 5100 years. Science Advances. 2023;9(11):eadd5582. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1126_sciadv_add5582. doi:10.1126/sciadv.add5582
  18. Wang M, Wang Q, Wang Z, Wang Q, Zhang X, Pan Y. The Molecular Evolutionary Patterns of the Insulin/FOXO Signaling Pathway. Evolutionary Bioinformatics Online. 2013;9:1–16. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_73cea8f11cab402a8b267bdb9cb7144d. doi:10.4137/EBO.S10539
  19. Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R, et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell. 2021;184(14):3829-3841.e21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2545595560. doi:10.1016/j.cell.2021.05.018
  20. Wiberg DA, Strzepek K. Development of Regional Economic Supply Curves for Surface Water Resources and Climate Change Assessments: A Case Study of China. nternational Institute for Applied Systems Analysis; 2005. Report No.: RR-05-001. https://www.researchgate.net/publication/265157888_Development_of_Regional_Economic_Supply_Curves_for_Surface_Water_Resources_and_Climate_Change_Assessments_A_Case_Study_of_China
  21. Yan C, Tadadej C, Chamroonsawasdi K, Chansatitporn N, Sung JF. Ethnic Disparities in Utilization of Maternal and Child Health Services in Rural Southwest China. International Journal of Environmental Research and Public Health. 2020;17(22):8610. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_3390_ijerph17228610. doi:10.3390/ijerph17228610
  22. Yang MA, Fan X, Sun B, Chen C, Lang J, Ko Y-C, Tsang C, Chiu H, Wang T, Bao Q, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science. 2020;369(6501):282–288. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2404042277. doi:10.1126/science.aba0909
  23. Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, Slatkin M, Meyer M, Pääbo S, Kelso J, et al. 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology. 2017;27(20):3202-3208.e9. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_cub_2017_09_030. doi:10.1016/j.cub.2017.09.03

Why have linear chromosomes? Genetically engineering circular telomere-free eukaryotic chromosomes
- Dr. Melissa Mefford

  1. Fica SM, Mefford MA, Piccirilli JA, Staley JP. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nature structural & molecular biology. 2014;21(5):464–471. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4257784. doi:10.1038/nsmb.2815
  2. Hamilton T, Mefford MA. Challenges in creating circularized versions of linear chromosomes. 2023. https://scholarworks.moreheadstate.edu/celebration_posters_2023/5
  3. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022;12(1):31–46. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1158_2159_8290_cd_21_1059. doi:10.1158/2159-8290.CD-21-1059
  4. Klar AJ, Strathern JN, Hicks JB, Prudente D. Efficient Production of a Ring Derivative of Chromosome III by the Mating-Type Switching Mechanism in Saccharomyces cerevisiae. Molecular and Cellular Biology. 1983;3(5):803–810. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1128_mcb_3_5_803. doi:10.1128/mcb.3.5.803-810.1983
  5. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2761182543. doi:10.1016/j.cell.2022.11.001
  6. Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. The EMBO Journal. 2013;32(22):2980–2993. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_emboj_2013_227. doi:10.1038/emboj.2013.227
  7. Mefford MA, Zappulla DC. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity. Molecular and Cellular Biology. 2016;36(2):251–261. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1128_mcb_00794_15. doi:10.1128/MCB.00794-15
  8. Naito T, Matsuura A, Ishikawa F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genetics. 1998;20(2):203. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_69963149. doi:10.1038/2517
  9. Saccharomyces cerevisiae. In: Wikipédia. 2024. https://fr.wikipedia.org/w/index.php?title=Saccharomyces_cerevisiae&oldid=211742824
  10. Shao Y, Lu N, Cai C, Zhou F, Wang S, Zhao Z, Zhao G, Zhou J-Q, Xue X, Qin Z. A single circular chromosome yeast. Cell Research. 2019;29(1):87–89. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_s41422_018_0110_y. doi:10.1038/s41422-018-0110-y

Identification of therapeutic vulnerabilities in stem cells in myeloid neoplasms
- Dr. Christopher Park

  1. Brown G, Marcinkowska E. The Biology and Treatment of Myeloid Leukaemias. Basel, Switzerland: MDPI; 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_oapen_doabooks_42238
  2. Bryder D, Rossi DJ, Weissman IL. Hematopoietic Stem Cells. The American Journal of Pathology. 2006;169(2):338–346. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_lup_lub_lu_se_8e4f6808_4965_4664_9242_eb273a7bc4c4.
  3. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation. Dillin A, editor. PLoS Biology. 2007;5(8):e201. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_1291912242.
  4. Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood. 2008;111(12):5553–5561. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_2007_11_123547.
  5. Christopher Park Lab. NYU Langone Medical Center. https://chrisparklab.com/
  6. Chung SS, Eng WS, Hu W, Khalaj M, Garrett-Bakelman FE, Tavakkoli M, Levine RL, Carroll M, Klimek VM, Melnick AM, et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Science Translational Medicine. 2017;9(374):eaaj2025. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1126_scitranslmed_aaj2025.
  7. Duchmann M, Itzykson R. Clinical update on hypomethylating agents. International Journal of Hematology. 2019;110(2):161–169. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1007_s12185_019_02651_9
  8. Dykstra B, Olthof S, Schreuder J, Ritsema M, De Haan G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. Journal of Experimental Medicine. 2011;208(13):2691–2703. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244040.
  9. Farrell TL, McGuire TR, Bilek LD, Brusnahan SK, Jackson JD, Lane JT, Garvin KL, O’Kane BJ, Berger AM, Tuljapurkar SR, et al. Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site. Experimental Hematology. 2014;42(2):146–154. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3944726.
  10. Fuchs O, editor. Myelodysplastic Syndromes. InTech; 2016. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928398266006241.
  11. Fuchs O, editor. Recent Developments in Myelodysplastic Syndromes. IntechOpen; 2019. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928397750506241.
  12. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. New England Journal of Medicine. 2014;371(26):2477–2487. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_prod_swepub_kib_ki_se_130364140.
  13. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120(12):2454–2465. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_2012_03_420489.
  14. Harrison DE, Astle CM, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. The Journal of Immunology. 1989;142(11):3833–3840. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_4049_jimmunol_142_11_3833.
  15. Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology. 2017;7:286. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_aacca2d4c578442b80970ca809c788d9.
  16. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine. 2014;371(26):2488–2498. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1056_nejmoa1408617.
  17. Liang R, Arif T, Kalmykova S, Kasianov A, Lin M, Menon V, Qiu J, Bernitz JM, Moore K, Lin F, et al. Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell. 2020;26(3):359-376.e7. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2020_01_013
  18. Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. Journal of Cell Biology. 2011;193(2):257–266. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3080271
  19. Majeti R, Park CY, Weissman IL. Identification of a Hierarchy of Multipotent Hematopoietic Progenitors in Human Cord Blood. Cell Stem Cell. 2007;1(6):635–645. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2007_10_001
  20. Mansell E, Sigurdsson V, Deltcheva E, Brown J, James C, Miharada K, Soneji S, Larsson J, Enver T. Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. Cell Stem Cell. 2021;28(2):241-256.e6. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_stem_2020_09_018
  21. Martin GH, Roy N, Chakraborty S, Desrichard A, Chung SS, Woolthuis CM, Hu W, Berezniuk I, Garrett-Bakelman FE, Hamann J, et al. CD97 is a critical regulator of acute myeloid leukemia stem cell function. Journal of Experimental Medicine. 2019;216(10):2362–2377. https://doi.org/10.1084/jem.20190598.
  22. McGowan KA, Pang WW, Bhardwaj R, Perez MG, Pluvinage JV, Glader BE, Malek R, Mendrysa SM, Weissman IL, Park CY, et al. Reduced ribosomal protein gene dosage and p53 activation in low-risk myelodysplastic syndrome. Blood. 2011;118(13):3622–3633. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3186336.
  23. Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood. 2002;100(4):1302–1309. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1182_blood_v100_4_1302_h81602001302_1302_1309.
  24. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences. 2011;108(50):20012–20017. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_911941323
  25. Ramalingam P, Poulos MG, Lazzari E, Gutkin MC, Lopez D, Kloss CC, Crowley MJ, Katsnelson L, Freire AG, Greenblatt MB, et al. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications. 2020;11(1):666. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6b54770221c34086b376c539aef6277a
  26. Rodriguez-Fraticelli AE, Weinreb C, Wang S-W, Migueles RP, Jankovic M, Usart M, Klein AM, Lowell S, Camargo FD. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature. 2020;583(7817):585–589. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579674.
  27. Romero LA, Hattori T, Ali MAE, Ketavarapu G, Koide A, Park CY, Koide S. High-valency Anti-CD99 Antibodies Toward the Treatment of T Cell Acute Lymphoblastic Leukemia. Journal of Molecular Biology. 2022;434(5):167402. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_jmb_2021_167402
  28. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–729. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_lup_lub_lu_se_fdf8a23e_6527_467b_a157_ba8c8d7d5272
  29. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences. 2005;102(26):9194–9199. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1073_pnas_0503280102
  30. Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. Journal of Experimental Medicine. 2014;211(2):217–231. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1084_jem_20131128
  31. Sudo K, Ema H, Morita Y, Nakauchi H. Age-Associated Characteristics of Murine Hematopoietic Stem Cells. The Journal of Experimental Medicine. 2000;192(9):1273–1280. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2193349
  32. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Laboratory Investigation. 2006;86(12):1203–1207. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68171745
  33. Van Zant G, Holland BP, Eldridge PW, Chen JJ. Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. The Journal of Experimental Medicine. 1990;171(5):1547–1565. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2187897
  34. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine. 2014;20(12):1472–1478. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4313872

Impacts of disturbance on marine mammals: Physiological and behavioral responses to stressors
- Gitte McDonald

  1. Bernaldo De Quirós Y, Fernandez A, Baird RW, Brownell RL, Aguilar De Soto N, Allen D, Arbelo M, Arregui M, Costidis A, Fahlman A, et al. Advances in research on the impacts of anti-submarine sonar on beaked whales. Proceedings of the Royal Society B: Biological Sciences. 2019;286(1895):20182533. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_jstor_primary_26631166.
  2. Doughty CE, Roman J, Faurby S, Wolf A, Haque A, Bakker ES, Malhi Y, Dunning JB, Svenning J-C. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences. 2016;113(4):868–873. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_1765603575.
  3. García-Párraga D, Crespo-Picazo J, De Quirós Y, Cervera V, Martí-Bonmati L, Díaz-Delgado J, Arbelo M, Moore M, Jepson P, Fernández A. Decompression sickness (‘the bends’) in sea turtles. Diseases of Aquatic Organisms. 2014;111(3):191–205. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1787958428.
  4. Gulf Watch Alaska: The Mystery of THE BLOB: Investigation. Alaska Sealife Center. https://www.alaskasealife.org/gulfwatchblobvft_investigation
  5. Hindell MA. Elephant Seals. In: Encyclopedia of Marine Mammals. 3rd ed. Elsevier; 2018. p. 303–307. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_elsevier_sciencedirect_doi_10_1016_B978_0_12_804327_1_00115_1
  6. Jobsis PD, Ponganis PJ, Kooyman GL. Effects of training on forced submersion responses in harbor seals. Journal of Experimental Biology. 2001;204(22):3877–3885. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_72413023.
  7. Kooyman GL, McDonald BI, Williams CL, Meir JU, Ponganis PJ. The aerobic dive limit: After 40 years, still rarely measured but commonly used. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2021;252:110841. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_cbpa_2020_110841.
  8. Larson SE, Bodkin JL, VanBlaricom GR. Sea otter conservation. London, UK San Diego, CA, USA: Academic Press is an imprint of Elsevier; 2015. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928389093206241
  9. McLeish T. Return of the sea otter: the story of the animal that evaded extinction on the Pacific Coast. Seattle: Sasquatch Books; 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9924926293606241
  10. Moss Landing Marine Laboratories. San José State University. https://mlml.sjsu.edu/
  11. Oftedal OT, Ralls K, Tinker MT, Green A. NUTRITIONAL CONSTRAINTS ON THE SOUTHERN SEA OTTER IN THE MONTEREY BAY NATIONAL MARINE SANCTUARY  and a comparison to sea otter populations at San Nicolas Island, California and Glacier Bay, Alaska. Monterey Bay National Marine Sanctuary; 2007. https://sanctuarysimon.org/dbtools/project-database/index.php?ID=100263
  12. Peterson SH, Ackerman JT, Holser RR, McDonald BI, Costa DP, Crocker DE. Mercury Bioaccumulation and Cortisol Interact to Influence Endocrine and Immune Biomarkers in a Free-Ranging Marine Mammal. Environmental Science & Technology. 2023;57(14):5678–5692. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2792905979.
  13. Ravalli R. Sea otters: a history. Lincoln: University of Nebraska Press; 2018. (Studies in Pacific worlds). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9926514493606241
  14. Sea Otter Savvy. Sea Otter Savvy. https://www.seaottersavvy.org/
  15. Shirihai H, Jarrett B, Kirwan GM. Whales, dolphins, and other marine mammals of the world. Princeton, N.J: Princeton University Press; 2006. (Princeton field guides). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9910236373606241
  16. Soundcheck: Ocean noise. National Oceanic and Atmospheric Administration. https://www.noaa.gov/explainers/soundcheck-ocean-noise
  17. Wikelski M. I.2 Physiological Ecology: Animals. In: Levin SA, Carpenter SR, Godfray HCJ, Kinzig AP, Loreau M, Losos JB, Walker B, Wilcove DS, editors. The Princeton Guide to Ecology. Princeton: Princeton University Press; 2009. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_walterdegruyter_books_10_1515_9781400833023_1

Lesson from and about Plants: Transducing a career
- Beronda Montgomery

  1. Mazzella MA, Casal JJ, Muschietti JP, Fox AR. Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science. 2014;5. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_a838c7750258422dbd226d68b8497295.
  2. Montgomery B. Lessons from Plants. Harvard University Press; 2021. https://newman.richmond.edu/login?url=https://www.jstor.org/stable/j.ctv33wwtpr
  3. Montgomery B, Sancheznieto F, Dahlberg ML. Academic Mentorship Needs a More Scientific Approach. Issues in Science and Technology. 2022;38(4):84–87. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2695111304
  4. Montgomery BL. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integrative And Comparative Biology. 2023;63(6):1391–1398. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2854967635
  5. Montgomery BL. From Deficits to Possibilities: Mentoring Lessons from Plants on Cultivating Individual Growth through Environmental Assessment and Optimization. Public Philosophy Journal. 2018;1(1). doi:https://doi.org/10.25335/M5/PPJ.1.1-3
  6. Montgomery BL. Planting Equity: Using What We Know to Cultivate Growth as a Plant Biology Community. The Plant Cell. 2020;32(11):3372–3375. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1105_tpc_20_00589
  7. Montgomery BL. Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiology and Molecular Biology Reviews. 2022;86(3):e00106-21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9491170
  8. Montgomery BL. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back. Frontiers in Plant Science. 2016;7. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_76da20ad2d954f58b71910d32b4e134f.
  9. Packard BW-L, Montgomery BL, Mondisa J-L. Taking stock of campus mentoring ecosystems: a peer assessment dialogue exercise. International Journal of Mentoring and Coaching in Education. 2024;13(1):17–33. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_emerald_primary_10_1108_IJMCE-09-2022-0072.
  10. Pattanaik B, Whitaker MJ, Montgomery BL. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon. Frontiers in Microbiology. 2012;3. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_573ebe98a15e40509b0824054078e1ec
  11. Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Frontiers in Microbiology. 2021;12:819604. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_0de541bd08ce48508a93e89d6356435a.
  12. Timmermans MCP. Plant development. 1st ed. San Diego, CA: Academic Press; 2010. (Current topics in developmental biology). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928073529706241
  13. Van Gelderen K, Kang C, Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiology. 2018;176(2):1049–1060. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1104_pp_17_01079.
  14. Wada M, Nihon Shokubutsu Gakkai, editors. Light sensing in plants. Tokyo Berlin Heidelberg: Springer; 2005. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_askewsholts_vlebooks_9784431270928

City Rats in 3 Acts: From global trends in disease risk to local population ecology
- Jonathan Richardson

  1. Avilés-Rodríguez K, Hughes K, Richardson JL, Munshi-South J. Integrating Molecular Methods with a Social-Ecological Focus to Advance Urban Biodiversity Management. In: Lambert M, Schell C, editors. Urban Biodiversity and Equity: Justice-Centered Conservation in Cities. Oxford University Press; 2023. p. 0. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928482632406241. doi:10.1093/oso/9780198877271.003.0009
  2. Jacob J, Watanabe S, Richardson J, Gonzales N, Ploppert E, Lahvis G, Shiels A, Wenger S, Saverino K, Bhalerao J, et al. Divergent neural and endocrine responses in wild-caught and laboratory-bred Rattus norvegicus. Behavioural Brain Research. 2022;432:113978. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2681441469. doi:10.1016/j.bbr.2022.113978
  3. Jonathan Richardson’s Lab. University of Richmond. n.d. https://biology.richmond.edu/research/research-labs/richardson-lab.html
  4. NCBI. Rattus norvegicus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10116&lvl=3&lin=f&keep=1&srchmode=1&unlock
  5. NCBI. Rattus rattus. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=10117&lvl=3&lin=f&keep=1&srchmode=1&unlock
  6. Parsons MH, Richardson JL, Kiyokawa Y, Stryjek R, Corrigan RM, Deutsch MA, Ootaki M, Tanikawa T, Parsons FE, Munshi-South J. Rats and the COVID-19 pandemic: considering the influence of social distancing on a global commensal pest. Journal of Urban Ecology. 2021;7(1):juab027. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8500081. doi:10.1093/jue/juab027
  7. Richardson JL, Michaelides S, Combs M, Djan M, Bisch L, Barrett K, Silveira G, Butler J, Aye TT, Munshi-South J, et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evolutionary Applications. 2021;14(1):163–177. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_335dbf9d93b7490abdf893607de5c20a. doi:10.1111/eva.13133
  8. Schell CJ, Dyson K, Fuentes TL, Des Roches S, Harris NC, Miller DS, Woelfle-Erskine CA, Lambert MR. The ecological and evolutionary consequences of systemic racism in urban environments. Science. 2020;369(6510):eaay4497. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2434486014. doi:10.1126/science.aay4497

Ecological Connectivity and the Impacts of Climate Change in Coastal Ecosystems of the South Atlantic Bight
- Leslie Townsell

  1. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, et al. Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1554):2897–2912. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_755139828. doi:10.1098/rstb.2010.0170
  2. Centralized Data Management Office. National Estuarine Research Reserve System. https://cdmo.baruch.sc.edu/
  3. Feely R, Doney S, Cooley S. Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World. Oceanography. 2009;22(4):36–47. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_38cb117772004ff1890f6cc70d008069. doi:10.5670/oceanog.2009.95
  4. Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, Bush SR, Cao L, Gelcich S, Gephart JA, et al. Blue food demand across geographic and temporal scales. Nature Communications. 2021;12(1):5413. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_8b46530ae29f4fdf8139b3bf32bd5553. doi:10.1038/s41467-021-25516-4
  5. NCBI. Carcharhinus plumbeus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  6. NCBI. Crassostrea virginica. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  7. NCBI. Rhizoprionodon terraenovae. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  8. NCBI. Sphyrna tiburo. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7824&lvl=3&p=has_linkout&p=blast_url&p=genome_blast&lin=f&keep=1&srchmode=1&unlock
  9. Ray NE, Maguire TJ, Al-Haj AN, Henning MC, Fulweiler RW. Low Greenhouse Gas Emissions from Oyster Aquaculture. Environmental Science & Technology. 2019;53(15):9118–9127. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2257694665. doi:10.1021/acs.est.9b02965
  10. Shell Recycling. Town & County of Nantucket Massachusetts. 2020 Feb 13. https://www.nantucket-ma.gov/1425/Shell-Recycling-Program
  11. Water Quality. Sapelo Island National Estuarine Research Reserve. n.d. https://sapelonerr.org/research-monitoring/water-quality-monitoring

Decoding GLP1R Agonists like Ozempic: Mechanisms of Next Generation Therapeutics on Appetite Control
- Lizzie Godschall

  1. GLP1R glucagon-like peptide 1 receptor [Homo sapiens (human)]. GENE: NCBI. n.d. [accessed 2024 Apr 23]. https://www.ncbi.nlm.nih.gov/gene/2740
  2. Glp1r glucagon-like peptide 1 receptor [Mus musculus (house mouse)]. GENE: NCBI. n.d. [accessed 2024 Apr 23]. https://www.ncbi.nlm.nih.gov/gene/14652
  3. Kawai T, Sun B, Yoshino H, Feng D, Suzuki Y, Fukazawa M, Nagao S, Wainscott DB, Showalter AD, Droz BA, et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proceedings of the National Academy of Sciences. 2020 [accessed 2024 Apr 23];117(47):29959–29967. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703558. doi:10.1073/pnas.2014879117
  4. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 [accessed 2024 Apr 23];518(7538):197–206. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_prod_swepub_kib_ki_se_130690386. doi:10.1038/nature1417

Fertility in flux? Assessing the evolution of reproductive traits in an invasive fruit fly
- Ansleigh Gunter

  1. NCBI. Zaprionus indianus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  2. Rakes LM, Delamont M, Cole C, Yates JA, Blevins LJ, Hassan FN, Bergland AO, Erickson PA. A small survey of introduced Zaprionus indianus (Diptera: Drosophilidae) in orchards of the eastern United States. Journal of Insect Science. 2023;23(5):21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10590155. doi:10.1093/jisesa/iead092
  3. The Methods We’re Using. The Walter Lab. 2020. https://www.walter-lab.com/methods

Do parasitoid wasps affect the competitive success of an invasive fruit fly?
- Camille Walsh-Antzak

  1. Commar LS, Galego LG da C, Ceron CR, Carareto CMA. Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genetics and Molecular Biology. 2012;35:395–406. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6de0f32735604d5596584a48a3b6006b. doi:10.1590/S1415-47572012000300003
  2. NCBI. Leptopilina heterotoma. Taxonomy Browser. n.d.. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=63436
  3. NCBI. Zaprionus indianus. Taxonomy Browser. n.d. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
  4. Rakes LM, Delamont M, Cole C, Yates JA, Blevins LJ, Hassan FN, Bergland AO, Erickson PA. A small survey of introduced Zaprionus indianus (Diptera: Drosophilidae) in orchards of the eastern United States. Journal of Insect Science. 2023;23(5):21. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10590155. doi:10.1093/jisesa/iead092
  5. Ziska LH, editor. Invasive species and global climate change. Second edition. Wallingford, Oxfordshire, UK ; CABI; 2023. (CABI Invasives). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma992838647030624

EndoEcho: Amplifying awareness of endometriosis
- Lesley Boadu

  1. Aliabadi T. Endometriosis: Symptoms and Advanced Treatments. Thaïs Aliabadi, MD Obstetrics, Gynecology & Infertility. [accessed 2024 Apr 23]. https://www.draliabadi.com/gynecology/endometriosis/
  2. Alimi Y, Iwanaga J, Loukas M, Tubbs RS. The Clinical Anatomy of Endometriosis: A Review. Cureus. [accessed 2024 Apr 23];10(9):e3361. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6257623. doi:10.7759/cureus.3361
  3. Attia GR, Zeitoun K, Edwards D, Johns A, Carr BR, Bulun SE. Progesterone Receptor Isoform A But Not B Is Expressed in Endometriosis1. The Journal of Clinical Endocrinology & Metabolism. 2000 [accessed 2024 Apr 23];85(8):2897–2902. https://doi.org/10.1210/jcem.85.8.6739. doi:10.1210/jcem.85.8.6739
  4. Marsh C. Endometriosis / edited by Courtney Marsh. London: IntechOpen; 2021. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928444234706241
  5. Nezhat C, Nezhat F, Nezhat C. Endometriosis: ancient disease, ancient treatments. Fertility and Sterility. 2012 [accessed 2024 Apr 23];98(6, Supplement):S1–S62. (Endometriosis: ancient disease,ancient treatments). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1222233570. doi:10.1016/j.fertnstert.2012.08.001
  6. Orlando MS, Luna Russo MA, Richards EG, King CR, Park AJ, Bradley LD, Chapman GC. Racial and ethnic disparities in surgical care for endometriosis across the United States. American Journal of Obstetrics and Gynecology. 2022;226(6):824.e1-824.e11. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2624660131. doi:10.1016/j.ajog.2022.01.02

Novel Hox gene functions in asexual reproduction & size control

- Dr. Christopher ArnoldAugust 26, 2024 ▼

  1. Arnold CP, Benham-Pyle BW, Lange JJ, Wood CJ, Sánchez Alvarado A. Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour. Nature. 2019;572(7771):655–659. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6872711. doi:10.1038/s41586-019-1478-7
  2. Arnold CP, Lozano AM, Mann FG, Nowotarski SH, Haug JO, Lange JJ, Seidel CW, Alvarado AS. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nature Communications. 2021;12(1):6706. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_47e7a1a8e18d4eb2b1c276c8243bea15. doi:10.1038/s41467-021-26986-2
  3. Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife. 2016;5:e16793. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_c939f3de0a304b01a070e95cb4580378. doi:10.7554/eLife.16793
  4. Arnold Lab. Arnold Lab. [accessed 2024 Aug 1]. https://www.planarnoldlab.com/
  5. Department of Biology. West Virginia University. 2022 Jul 12 [accessed 2024 Aug 1]. https://biology.wvu.edu/
  6. Douglas M, Choi J, Clark MA. 27.1 Features of the Animal Kingdom. In: Biology 2e. Houston, Texas: OpenStax; 2018. https://openstax.org/books/biology-2e/pages/27-1-features-of-the-animal-kingdom
  7. Ferrier DEK, editor. Hox modules in evolution and development. First edition. Boca Raton ; London: CRC Press, Taylor & Francis Group; 2023. (Evolutionary cell biology). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928396116106241
  8. Ivankovic M, Haneckova R, Thommen A, Grohme MA, Vila-Farré M, Werner S, Rink JC. Model systems for regeneration: planarians. Development. 2019 [accessed 2024 Aug 28];146(17):dev167684. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2289567333. doi:10.1242/dev.167684
  9. NCBI. Schmidtea mediterranea. Taxonomy Browser. [accessed 2024 Aug 28]. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=79327
  10. PhiLiP. Eight Hox genes of D. melanogaster (fruitfly). 2007 [accessed 2024 Aug 28]. https://commons.wikimedia.org/wiki/File:Hoxgenesoffruitfly.svg
  11. Pourquié O, editor. Hox Genes. 2009. (Current Topics in Developmental Biology). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928093040606241
  12. The Explorer’s Guide to Biology. What is RNA interference (RNAi)? YouTube; 2021 [accessed 2024 Aug 28]. https://www.youtube.com/watch?v=xDg6pu7HWz

Organismal antifragility

- Dr. Lynn "Marty" MartinSeptember 2, 2024 ▼

  1. Agrawal K, Das V, Vyas P, Hajdúch M. Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacology & Therapeutics. 2018;188:45–79. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2004359680. doi:10.1016/j.pharmthera.2018.02.006
  2. Crino OL, Bonduriansky R, Martin LB, Noble DWA. A conceptual framework for understanding stress-induced physiological and transgenerational effects on population responses to climate change. Evolution Letters. 2024;8(1):161–171. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2928588600. doi:10.1093/evlett/qrad037
  3. Dantzer B, Mabry KE, Bernhardt JR, Cox RM, Francis CD, Ghalambor CK, Hoke KL, Jha S, Ketterson E, Levis NA, et al. Understanding Organisms Using Ecological Observatory Networks. Integrative Organismal Biology. 2023;5(1):obad036. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10586040. doi:10.1093/iob/obad036
  4. Ferraguti M, Magallanes S, Jiménez‐Peñuela J, Martínez‐de la Puente J, Garcia‐Longoria L, Figuerola J, Muriel J, Albayrak T, Bensch S, Bonneaud C, et al. Environmental, geographical and time‐related impacts on avian malaria infections in native and introduced populations of house sparrows ( Passer domesticus ), a globally invasive species. Global Ecology and Biogeography. 2023;32(5):809–823. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_swepub_primary_oai_lup_lub_lu_se_5159d396_c3bf_4e71_a9e3_d06d4209c749. doi:10.1111/geb.13651
  5. Fletcher LE, Martin LB, Downs CJ. Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms. Physiological and Biochemical Zoology. 2023;96(6):405–417. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1086_727050. doi:10.1086/727050
  6. Florkowski MR, Yorzinski JL. Gut microbiome diversity and composition is associated with exploratory behavior in a wild-caught songbird. Animal Microbiome. 2023;5. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_f4d613da96fe4447a70cb33da25e4025. doi:https://doi.org/10.1186/s42523-023-00227-x
  7. Hanson HE, Mathews NS, Hauber ME, Martin LB. The house sparrow in the service of basic and applied biology. King SR, Rodgers P, Ravinet M, editors. eLife. 2020;9:e52803. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_e1eb8b1c985c4669b1d28813e8054c3b. doi:10.7554/eLife.52803
  8. Hanson HE, Wang C, Schrey AW, Liebl AL, Ravinet M, Jiang RHY, Martin LB. Epigenetic Potential and DNA Methylation in an Ongoing House Sparrow (Passer domesticus) Range Expansion. American Naturalist. 2022;200(5):662–674. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_uchicagopress_journals_720950. doi:10.1086/720950
  9. Injaian AS, Francis CD, Ouyang JQ, Dominoni DM, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Johnson MA, et al. Baseline and stress-induced corticosterone levels across birds and reptiles do not reflect urbanization levels. Conservation Physiology. 2020;8(1). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978728. doi:10.1093/conphys/coz110
  10. Jimeno B, Zimmer C. Glucocorticoid receptor expression as an integrative measure to assess glucocorticoid plasticity and efficiency in evolutionary endocrinology: A perspective. Hormones and Behavior. 2022;145. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2699956747. doi:10.1016/j.yhbeh.2022.105240
  11. Kilvitis HJ, Hanson H, Schrey AW, Martin LB. Epigenetic Potential as a Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions. Integrative and Comparative Biology. 2017;57(2):385–395. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1936161004
  12. Kilvitis HJ, Schrey AW, Ragsdale AK, Berrio A, Phelps SM, Martin LB. DNA methylation predicts immune gene expression in introduced house sparrows Passer domesticus. Journal of Avian Biology. 2019;50(6). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2251617626. doi:10.1111/jav.01965
  13. Koller KK, Kernbach ME, Reese D, Unnasch TR, Martin LB. House Sparrows Vary Seasonally in Their Ability to Transmit West Nile Virus. Physiological and Biochemical Zoology. 2023;96(5):332–341. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1086_725888. doi:10.1086/725888
  14. Lauer ME, Kodak H, Albayrak T, Lima MR, Ray D, Simpson-Wade E, Tevs DR, Sheldon EL, Martin LB, Schrey AW. Introduced house sparrows ( Passer domesticus ) have greater variation in DNA methylation than native house sparrows. vonHoldt B, editor. Journal of Heredity. 2024;115(1):11–18. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2885540276. doi:10.1093/jhered/esad067
  15. Liebl AL, Martin LB. Exploratory behaviour and Stressor hyperresponsiveness facilitate range expansion of an introduced songbird. Proceedings: Biological Sciences. 2012;279(1746):4375–4381. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_royalsociety_journals_RSPBv279i1746_0831064208_zip_rspb_279_issue_1746_rspb_2012_1606_rspb_2012_1606
  16. Liebl AL, Martin LB. Living on the edge: range edge birds consume novel foods sooner than established ones. Behavioral Ecology. 2014;25(5):1089–1096. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1093_beheco_aru089. doi:10.1093/beheco/aru089
  17. Liebl AL, Schrey AW, Richards CL, Martin LB. Patterns of DNA Methylation Throughout a Range Expansion of an Introduced Songbird. Integrative and Comparative Biology. 2013;53(2):351–358. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1430848148. doi:10.1093/icb/ict007
  18. Martin lab at USF. MARTIN LAB AT USF. [accessed 2024 Aug 7]. https://organismalbiology.weebly.com/
  19. Martin PA, Newton AC, Bullock JM. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B: Biological Sciences. 2014;281(1782):20140303. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_royalsociety_journals_10_1098_rspb_2014_0303. doi:10.1098/rspb.2014.0303
  20. McMinds R, Jiang RHY, Adapa SR, Cornelius Ruhs E, Munds RA, Leiding JW, Downs CJ, Martin LB. Bacterial sepsis triggers stronger transcriptomic immune responses in larger primates. Proceedings of the Royal Society B: Biological Sciences. 2024;291(2025):20240535. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3072291984. doi:10.1098/rspb.2024.0535
  21. Ray D, Sheldon EL, Zimmer C, Martin LB, Schrey AW. Screening H3 Histone Acetylation in a Wild Bird, the House Sparrow ( Passer Domesticus ). Integrative Organismal Biology. 2024;6(1):obae004. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10956398. doi:10.1093/iob/obae004
  22. Scanes CG, Dridi S, editors. Sturkie’s avian physiology. Seventh. London, England: Academic Press; 2022. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/aqkk96/alma9928388849806241
  23. Scheiner SM. Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics. 1993;24(1):35–68. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1146_annurev_es_24_110193_000343
  24. Sheldon E, Zimmer C, Hanson H, Koussayer B, Schrey A, Reese D, Wigley P, Wedley AL, Martin LB. High epigenetic potential protects songbirds against pathogenic Salmonella enterica infection. Journal of Experimental Biology. 2023;226(13):jeb245475. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2825812572. doi:10.1242/jeb.245475
  25. Sheldon EL, Schrey AW, Lauer ME, Martin LB. Epigenetic potential: Promoter CpG content positively covaries with lifespan and is dependent on gene function among vertebrates. vonHoldt B, editor. Journal of Heredity. 2023;114(3):207–218. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2778973637. doi:10.1093/jhered/esad006
  26. Taleb NN. Antifragile: things that gain from disorder. New York: Random House; 2012. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9914677213606241
  27. The National Ecological Observatory Network (NEON) | Battelle Program. Default. [accessed 2024 Sep 10]. https://www.battelle.org/markets/infrastructure/research-management-operations/research-infrastructure-solutions/neon
  28. USF Health. University of South Florida. n.d. [accessed 2024 Aug 7]. https://health.usf.edu/
  29. Zimmer C, Hanson HE, Garrison M, Reese D, Dor R, Søraker JS, Ho Thu P, Sheldon EL, Martin LB. Immune gene expression and epigenetic potential affect the consumption of risky food by female house sparrows. Brain, Behavior, and Immunity. 2024;119:6–13. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3022569205. doi:10.1016/j.bbi.2024.03.033
  30. Zimmer C, Hanson HE, Wildman DE, Uddin M, Martin LB. FKBP5: A Key Mediator of How Vertebrates Flexibly Cope with Adversity. BioScience. 2020;70(12):1127–1138. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2476836722. doi:10.1093/biosci/biaa114
  31. Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5 : promising physiological targets for conservation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2024;379(1898):20220512. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2922449293. doi:10.1098/rstb.2022.0512

Sphingolipid signaling coordinates astrocyte-neuron crosstalk and neural circuit assembly

- Jean GonzalesSeptember 9, 2024 ▼

  1. van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacology & Therapeutics. 2023;244:108381. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2786515081. doi:10.1016/j.pharmthera.2023.108381
  2. Gilles J Guillemin. Glial Cells: Managers of Neuro-immunity. Frontiers Media SA; 2016. (Frontiers Research Topics). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928399624206241
  3. Robert J. Hedgehog Pathway. Switzerland: Springer International Publishing AG; 2015. p. 109–115. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_springer_books_10_1007_978_3_319_14340_8_9. doi:10.1007/978-3-319-14340-8_9
  4. Sandeep Singh. VCU School of Medicine. n.d. [accessed 2024 Sep 10]. https://medschool.vcu.edu/about/portfolio/details/singhsk/
  5. Singh SK, Kordula T, Spiegel S. Neuronal contact upregulates astrocytic sphingosine-1-phosphate receptor 1 to coordinate astrocyte-neuron cross communication. Glia. 2022;70(4):712–727. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9219554. doi:10.1002/glia.24135
  6. Xie Y, Kuan AT, Wang W, Herbert ZT, Mosto O, Olukoya O, Adam M, Vu S, Kim M, Tran D, et al. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Reports. 2022;38(8):110416. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962654. doi:10.1016/j.celrep.2022.110416

Droplet digital PCR

- Sarah DanielSeptember 16, 2024 ▼

  1. Ciesielski M, Blackwood D, Clerkin T, Gonzalez R, Thompson H, Larson A, Noble R. Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater. Journal of Virological Methods. 2021 [accessed 2024 Sep 23];297:114230. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_jviromet_2021_114230. doi:10.1016/j.jviromet.2021.114230
  2. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry. 2011 [accessed 2024 Sep 23];83(22):8604–8610. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3216358. doi:10.1021/ac202028g
  3. Mavridis K, Papapostolou KM, Riga M, Ilias A, Michaelidou K, Bass C, Van Leeuwen T, Tsagkarakou A, Vontas J. Multiple TaqMan qPCR and droplet digital PCR (ddPCR) diagnostics for pesticide resistance monitoring and management, in the major agricultural pest Tetranychus urticae. Pest Management Science. 2022 [accessed 2024 Sep 23];78(1):263–273. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2607290452. doi:10.1002/ps.6632
  4. Murthy S, Suresh A, Dandasena D, Singh S, Subudhi M, Bhandari V, Bhanot V, Arora JS, Sharma P. Multiplex ddPCR: A Promising Diagnostic Assay for Early Detection and Drug Monitoring in Bovine Theileriosis. Pathogens. 2023 [accessed 2024 Sep 23];12(2):296. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_7830a5ff8d6c49a7a2a2f0c99aa2de36. doi:10.3390/pathogens12020296

Stem cell and self-identity: the power of a supportive environment

- Dr. Christina TerminiSeptember 23, 2024 ▼

  1. Chang VY, Munson M, Termini CM. Approaches to address bias in letters of recommendation. Trends in Pharmacological Sciences. 2023;44(6):321–323. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2793988559. doi:10.1016/j.tips.2023.03.002
  2. Chicana B, Termini CM. Radical recovery from radiation. Nature Reviews Molecular Cell Biology. 2023;24(9):605–605. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2810916594. doi:10.1038/s41580-023-00611-0
  3. Davis-Reyes B, Starbird C, Fernandez AI, McCall T, Hinton AO, Termini CM. Shadow mentoring: a cost–benefit review for reform. Trends in Cancer. 2022;8(8):620–622. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767119/. doi:10.1016/j.trecan.2022.05.001
  4. De Lora JA, Hinton Jr. A, Termini CM. Creating inclusive environments in cell biology by casual mentoring. Trends in Cell Biology. 2022;32(9):725–728. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9767174. doi:10.1016/j.tcb.2022.04.009
  5. Education & Training. Fred Hutch Cancer Center. 2024 Mar 8 [accessed 2024 Aug 7]. https://www.fredhutch.org/en/education-training.html
  6. Fernandez AI, Starbird C, Davis-Reyes B, Termini CM, Hinton A, McCall T. Evaluating diversity, equity, and inclusion consultation requests. Trends in Molecular Medicine. 2022;28(9):707–709. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9767188. doi:10.1016/j.molmed.2022.06.006
  7. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. Differential Expression of Novel Potential Regulators in Hematopoietic Stem Cells. Roopenian D, editor. PLoS Genetics. 2005;1(3):e28. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_1313485901. doi:10.1371/journal.pgen.0010028
  8. Gyimesi M, Oikari LE, Yu C, Sutherland HG, Nyholt DR, Griffiths LR, Van Wijnen AJ, Okolicsanyi RK, Haupt LM. CpG methylation changes in human mesenchymal and neural stem cells in response to in vitro niche modifications. Biochimie. 2024;223:147–157. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3043069887. doi:10.1016/j.biochi.2024.04.007
  9. Hagen MW, Setiawan NJ, Woodruff KA, Termini CM. Syndecans in hematopoietic cells and their niches. American Journal of Physiology-Cell Physiology. 2024;327(2):C372–C378. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3071516070. doi:10.1152/ajpcell.00326.2024
  10. Hinton AO, McReynolds MR, Martinez D, Shuler HD, Termini CM. The power of saying no. EMBO reports. 2020;21(7):e50918. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7332800. doi:10.15252/embr.202050918
  11. Hinton AO, Termini CM, Spencer EC, Rutaganira FUN, Chery D, Roby R, Vue Z, Pack AD, Brady LJ, Garza-Lopez E, et al. Patching the Leaks: Revitalizing and Reimagining the STEM Pipeline. Cell. 2020;183(3):568–575. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2456412073. doi:10.1016/j.cell.2020.09.029
  12. Hinton AO, Vue Z, Termini CM, Taylor BL, Shuler HD, McReynolds MR. Mentoring minority trainees: Minorities in academia face specific challenges that mentors should address to instill confidence. EMBO reports. 2020;21(10):e51269. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7534611. doi:10.15252/embr.202051269
  13. HOME. Organizō. [accessed 2024 Sep 23]. https://www.organizolife.com
  14. Iyer-Biswas S. Living Histories. [accessed 2024 Sep 23]. https://iyerbiswas.com/outreach/livinghistories/
  15. Kramer ER, Liss B. GDNF–Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Letters. 2015;589(24PartA):3760–3772. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1749983581. doi:10.1016/j.febslet.2015.11.006
  16. Lautenberger DM, Dandar VM. The State of Women in Academic Medicine 2023-2024: Progressing Toward Equity. Washington, DC: AAMC; 2024. https://store.aamc.org/downloadable/download/sample/sample_id/626/
  17. McKinley KL, Didychuk AL, Nicholas DA, Termini CM. The transition phase: preparing to launch a laboratory. Trends in Biochemical Sciences. 2022;47(10):814–818. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9677455. doi:10.1016/j.tibs.2022.05.002
  18. McReynolds MR, Termini CM, Hinton AO, Taylor BL, Vue Z, Huang SC, Roby RS, Shuler H, Carter CS. The art of virtual mentoring in the twenty-first century for STEM majors and beyond. Nature Biotechnology. 2020;38(12):1477–1482. https://www.nature.com/articles/s41587-020-00758-7. doi:10.1038/s41587-020-00758-7
  19. Nicholas DA, Trejo J, Termini CM. Building a laboratory and networks during the COVID-19 pandemic. Trends in Biochemical Sciences. 2022;47(9):725–727. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9121306. doi:10.1016/j.tibs.2022.04.012
  20. Setiawan NJ, Termini CM. How to organize your lab purchases and inventory. Nature. 2023 Jun 16:d41586-023-02037–2. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2827259745. doi:10.1038/d41586-023-02037-2
  21. Termini CM, Moseley A, Othus M, Appelbaum FR, Chauncey TR, Erba HP, Fang M, Lee SC, Naru J, Pogosova-Agadjanyan EL, et al. Examining the impact of age on the prognostic value of ELN-2017 and ELN-2022 acute myeloid leukemia risk stratifications: a report from the SWOG Cancer Research Network. Haematologica. 2023;108(11):3148–3151. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_4c2f1cc13a4d4e82997fde8282f05c18. doi:10.3324/haematol.2023.282733
  22. Termini CM, Pang A, Li M, Fang T, Chang VY, Chute JP. Syndecan-2 enriches for hematopoietic stem cells and regulates stem cell repopulating capacity. Blood. 2022;139(2):188–204. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8759530. doi:10.1182/blood.2020010447
  23. Termini Lab. Fred Hutch Cancer Center. [accessed 2024 Aug 7]. http://research.fredhutch.org/termini/en.html
  24. The Living Histories Series. “Living Histories”. Tina Termini. YouTube; 2024 [accessed 2024 Sep 23]. https://www.youtube.com/watch?v=mKpD0t2BkmA
  25. Woodruff KA, Termini CM. Organize your –80 °C freezer to save time and prevent frozen fingertips. Nature. 2024;626(7998):443–444. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2915989942. doi:10.1038/d41586-024-00031-w

RNA and Immunity: Lessons from autoimmune diseases

- Mariano Garcia-BlancoSeptember 30, 2024 ▼

  1. Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes. 2023;14(10):1896. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_f638ab98db4c44359e15a38bec393cd9. doi:10.3390/genes14101896
  2. Banerjee S, Nagasawa CK, Widen SG, Garcia-Blanco MA. Parsing the roles of DExD-box proteins DDX39A and DDX39B in alternative RNA splicing. Nucleic Acids Research. 2024;52(14):8534–8551. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1093_nar_gkae431. doi:10.1093/nar/gkae431
  3. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA*. Proceedings of the National Academy of Sciences. 1977 [accessed 2024 Oct 17];74(8):3171–3175. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1073_pnas_74_8_3171. doi:10.1073/pnas.74.8.3171
  4. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science. 2008 [accessed 2024 Oct 17];321(5891):960–964. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_213593978
  5. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell. 1977;12(1):1–8. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_84086044. doi:10.1016/0092-8674(77)90180-5
  6. Department of Microbiology, Immunology, and Cancer Biology -. University of Virginia | School of Medicine. n.d. [accessed 2024 Aug 16]. https://med.virginia.edu/mic/
  7. Evsyukova I, Bradrick SS, Gregory SG, Garcia-Blanco MA. Cleavage and polyadenylation specificity factor 1 (CPSF1) regulates alternative splicing of interleukin 7 receptor (IL7R) exon 6. RNA. 2013 [accessed 2024 Oct 21];19(1):103–115. http://rnajournal.cshlp.org/content/19/1/103. doi:10.1261/rna.035410.112
  8. Galarza-Muñoz G, Briggs FBS, Evsyukova I, Schott-Lerner G, Kennedy EM, Nyanhete T, Wang L, Bergamaschi L, Widen SG, Tomaras GD, et al. Human Epistatic Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. Cell. 2017 [accessed 2024 Oct 21];169(1):72-84.e13. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_cell_2017_03_007. doi:10.1016/j.cell.2017.03.007
  9. Garcia-Blanco MA. Know thyself. RNA. 2015 [accessed 2024 Oct 17];21(4):525–526. http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.050138.115. doi:10.1261/rna.050138.115
  10. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, Caillier SJ, Ban M, Goris A, Barcellos LF, et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nature Genetics. 2007 [accessed 2024 Oct 17];39(9):1083–1091. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68215667. doi:10.1038/ng2103
  11. Hirano M, Galarza-Muñoz G, Nagasawa C, Schott G, Wang L, Antonia AL, Jain V, Yu X, Widen SG, Briggs FB, et al. The RNA helicase DDX39B activates FOXP3 RNA splicing to control T regulatory cell fate. eLife. 2023;12:e76927. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_c38f1aa37a0a4f6ba7bae9127557c87f. doi:10.7554/eLife.76927
  12. Kishore U, Shastri A, editors. Multiple Sclerosis : Genetics, Disease Mechanisms and Clinical Developments. IntechOpen; 2024 [accessed 2024 Oct 17]. https://directory.doabooks.org/handle/20.500.12854/135193
  13. Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nature Reviews Immunology. 2011 [accessed 2024 Oct 21];11(5):330–342. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7351348. doi:10.1038/nri2970
  14. Nagasawa CK, Bailey AO, Russell W, Garcia-Blanco MA. Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on FOXP3 introns. RNA. 2024 Apr 4:rna.079933.123. http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.079933.123. doi:10.1261/rna.079933.123
  15. Nagasawa CK, Garcia-Blanco MA. Early Splicing Complexes and Human Disease. International Journal of Molecular Sciences. 2023;24(14):11412. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_302793561dec4fdeb1ea34ef5e77c183. doi:10.3390/ijms241411412
  16. National Library of Medicine (US), National Center for Biotechnology Information. DDX39B DExD-box helicase 39B [Homo sapiens (human)]. GENE: NCBI. 2024 Oct 6 [accessed 2024 Oct 17]. https://www.ncbi.nlm.nih.gov/gene/7919
  17. Schott G, Galarza-Muñoz G, Trevino N, Chen X, Weirauch MT, Gregory SG, Bradrick SS, Garcia-Blanco MA. U2AF2 binds IL7R exon 6 ectopically and represses its inclusion. RNA. 2021 [accessed 2024 Oct 21];27(5):571–583. http://rnajournal.cshlp.org/content/27/5/571. doi:10.1261/rna.078279.120
  18. Seth M, Shirayama M, Gu W, Ishidate T, Conte D, Mello CC. The C. elegans CSR-1 Argonaute Pathway Counteracts Epigenetic Silencing to Promote Germline Gene Expression. Developmental Cell. 2013 [accessed 2024 Oct 17];27(6):656–663. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_devcel_2013_11_014. doi:10.1016/j.devcel.2013.11.014
  19. Yeh S-C, Strilets T, Tan W-L, Castillo D, Medkour H, Rey-Cadilhac F, Serrato-Pomar IM, Rachenne F, Chowdhury A, Chuo V, et al. The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity. Hartman AL, editor. PLOS Pathogens. 2023;19(3):e1011224. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_2802052782. doi:10.1371/journal.ppat.101122

Spilling the Tea: My journey from Gottwald to Graduate School

- Rachel DuMez-KornegayOctober 21, 2024 ▼

  1. DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLOS Genetics. 2024 [accessed 2024 Oct 22];20(3). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_e52bfffa1a5c4c5c8b88c150db76afe7. doi:10.1371/journal.pgen.1011003
  2. Home. the Dowen Lab. [accessed 2024 Oct 22]. https://robdowenlab.web.unc.edu/
  3. NCBI. Caenorhabditis elegans (NCBI:txid6239). Taxonomy Browser. [accessed 2024 Oct 22]. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=6239
  4. Riddle DL, Blumenthal T, Meyer BJ, Priess JR, editors. C. elegans II. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997 [accessed 2024 Oct 22]. http://www.ncbi.nlm.nih.gov/books/NBK19997/
  5. The University of North Carolina at Chapel Hill. The University of North Carolina at Chapel Hill. 2024 Oct 22 [accessed 2024 Oct 22]. https://www.unc.edu

Extreme Animal Weapons

- Douglas EmlenOctober 28, 2024 ▼

  1. Bell MA, Lim G, Caldwell C, Emlen DJ, Swanson BO. Rhinoceros beetle (Trypoxylus dichotomus) cuticular hydrocarbons contain information about body size and sex. Nehring V, editor. PLOS ONE. 2024;19(3):e0299796. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10939270. doi:10.1371/journal.pone.0299796
  2. Buchalski B, Gutierrez E, Emlen D, Lavine L, Swanson B. Variation in an Extreme Weapon: Horn Performance Differences across Rhinoceros Beetle (Trypoxylus dichotomus) Populations. Insects. 2019 [accessed 2024 Nov 5];10(10):346. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_175fdd6781e8422e9c78456aa3eaab9f. doi:10.3390/insects10100346
  3. Colligan T, Irish K, Emlen DJ, Wheeler TJ. DISCO: A deep learning ensemble for uncertainty-aware segmentation of acoustic signals. Albu F, editor. PLOS ONE. 2023;18(7):e0288172. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_2842433503. doi:10.1371/journal.pone.0288172
  4. Division of Biological Sciences. University of Montana. n.d. [accessed 2024 Aug 7]. https://www.umt.edu/biological-sciences/default.php
  5. Emlen DJ. Animal weapons: the evolution of battle. First edition. New York: Henry Holt and Company; 2014. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9917008573606241
  6. Emlen DJ, Allen CE. Genotype to Phenotype: Physiological Control of Trait Size and Scaling in Insects. Integrative and Comparative Biology. 2003 [accessed 2024 Nov 5];43(5):617–634. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_872436803. doi:10.1093/icb/43.5.617
  7. Emlen DJ, Nijhout HF. Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). Journal of Insect Physiology. 1999 [accessed 2024 Nov 5];45(1):45–53. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1859404082. doi:10.1016/S0022-1910(98)00096-1
  8. Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC. A Mechanism of Extreme Growth and Reliable Signaling in Sexually Selected Ornaments and Weapons. Science. 2012 [accessed 2024 Nov 5];337(6096):860–864. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1808084487. doi:10.1126/science.1224286
  9. Emlen DJ, Zimmer C. Evolution: making sense of life. 1st ed. Greenwood Village, Colo: Roberts; 2013. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/aqkk96/alma9915782813606241
  10. Emlen DJ, Zimmer C. Evolution: making sense of life. 2nd ed. New York: w.h.freeman Macmillan Learning; 2016. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/aqkk96/alma9922923923606241
  11. Emlen DJ, Zimmer C. Evolution: making sense of life. Third edition. Austin: Macmillan Learning; 2020. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9927369133606241
  12. Emlen Lab Homepage. Emlen lab. [accessed 2024 Aug 7]. https://www.emlen-lab.org/
  13. Flatow I (Host), Emlen DJ (Guest). Horns, claws, and teeth: The animal weapons arms race. Science Friday. 2014. (Science Friday). https://www.sciencefriday.com/segments/horns-claws-and-teeth-the-animal-weapons-arms-race/
  14. Katsuki M, Uesugi K, Yokoi T, Ozawa T, O’Brien DM, Emlen DJ, Okada K, Okada Y. Morphological and functional analyses for investigation of sexually selected legs in the frog legged beetle Sagra femorata (Coleoptera: Chrysomelidae). Arthropod Structure & Development. 2024;80:101360. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3051423598. doi:10.1016/j.asd.2024.101360
  15. Levinton JS, Allen BJ. The paradox of the weakening combatant: trade-off between closing force and gripping speed in a sexually selected combat structure. Functional Ecology. 2005 [accessed 2024 Nov 5];19(1):159–165. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_17860861. doi:10.1111/j.0269-8463.2005.00968.x
  16. McCullough EL, Emlen DJ. Evaluating the costs of a sexually selected weapon: big horns at a small price. Animal Behaviour. 2013 [accessed 2024 Nov 5];86(5):977–985. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_1446933077. doi:10.1016/j.anbehav.2013.08.017
  17. McCullough EL, Tobalske BW. Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs. Proceedings of the Royal Society B: Biological Sciences. 2013 [accessed 2024 Nov 5];280(1758):20130197. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_royalsociety_journals_10_1098_rspb_2013_0197. doi:10.1098/rspb.2013.0197
  18. Morita S, Shibata TF, Nishiyama T, Kobayashi Y, Yamaguchi K, Toga K, Ohde T, Gotoh H, Kojima T, Weber JN, et al. The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation. Scientific Reports. 2023;13(1):8735. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_17fd4e4969484687a7e121adc548cee9. doi:10.1038/s41598-023-35246-w
  19. Oufiero CE, Garland Jr T. Evaluating performance costs of sexually selected traits. Functional Ecology. 2007 [accessed 2024 Nov 5];21(4):676–689. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_20471142. doi:10.1111/j.1365-2435.2007.01259.x
  20. SciShow. SciShow talk show: Animal weapons with Doug Emlen & a southern three-banded armadillo. YouTube; 2015 [accessed 2024 Oct 22]. https://www.youtube.com/watch?v=No6mB6V1wL4
  21. del Sol JF, Hongo Y, Boisseau RP, Berman GH, Allen CE, Emlen DouglasJ. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae)†. Evolution. 2021 [accessed 2024 Nov 5];75(2):394–413. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2448412798. doi:10.1111/evo.14101
  22. Stern DL, Emlen DJ. The developmental basis for allometry in insects. Development. 1999 [accessed 2024 Nov 5];126(6):1091–1101. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_69586332. doi:10.1242/dev.126.6.1091
  23. Weber JN, Kojima W, Boisseau RP, Niimi T, Morita S, Shigenobu S, Gotoh H, Araya K, Lin C-P, Thomas-Bulle C, et al. Evolution of horn length and lifting strength in the Japanese rhinoceros beetle Trypoxylus dichotomus. Current Biology. 2023;33(20):4285-4297.e5. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2868120764. doi:10.1016/j.cub.2023.08.066
  24. Zinna R, Emlen D, Lavine LC, Johns A, Gotoh H, Niimi T, Dworkin I. Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle. Molecular Ecology. 2018 [accessed 2024 Nov 5];27(24):5049–5072. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2125299360. doi:10.1111/mec.14907

Exploring plant speciation and aquatic community ecology through sequencing in the classroom

- Karen Barnard-KubowNovember 4, 2024 ▼

  1. An Image-Based Key to the Zooplankton of North America. [accessed 2024 Nov 5]. https://cfb.unh.edu/cfbkey/html/instructions.html
  2. Barnard-Kubow KB, Becker D, Murray CS, Porter R, Gutierrez G, Erickson P, Nunez JCB, Voss E, Suryamohan K, Ratan A, et al. Genetic Variation in Reproductive Investment Across an Ephemerality Gradient in Daphnia pulex. Gojobori J, editor. Molecular Biology and Evolution. 2022;39(6):msac121. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9198359. doi:10.1093/molbev/msac121
  3. Barnard-Kubow KB, Debban CL, Galloway LF. Multiple glacial refugia lead to genetic structuring and the potential for reproductive isolation in a herbaceous plant. American Journal of Botany. 2015 [accessed 2024 Nov 5];102(11):1842–1853. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1758245687. doi:10.3732/ajb.1500267
  4. Barnard‐Kubow KB, So N, Galloway LF. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution. 2016 [accessed 2024 Nov 5];70(12):2752–2766. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1850771072. doi:10.1111/evo.13075
  5. Becker D, Barnard-Kubow K, Porter R, Edwards A, Voss E, Beckerman AP, Bergland AO. Adaptive phenotypic plasticity is under stabilizing selection in Daphnia. Nature Ecology & Evolution. 2022;6(10):1449–1457. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2704871587. doi:10.1038/s41559-022-01837-5
  6. Center for Genome and Metagenome Studies (CGEMS). James Madison University. [accessed 2024 Aug 7]. https://www.jmu.edu/genomics/index.shtml
  7. Department of Biology. James Madison University. n.d. [accessed 2024 Aug 7]. https://www.jmu.edu/biology/index.shtml
  8. Porter RJ, Gutierrez GM, Barnard-Kubow KB, Bergland AO. Maternally derived variation in the early termination of dormancy in Daphnia pulex. Hydrobiologia. 2024;851(6):1371–1384. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2928473515. doi:10.1007/s10750-023-05361-w
  9. Senn S, Bhattacharyya S, Presley G, Taylor AE, Nash B, Enke RA, Barnard-Kubow KB, Ford J, Jasinski B, Badalova Y. The Functional Biogeography of eDNA Metacommunities in the Post-Fire Landscape of the Angeles National Forest. Microorganisms. 2022;10(6):1218. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_45aea18857d549899e9d5f7815dbcbe3. doi:10.3390/microorganisms10061218
  10. Stankowski S, Cutter AD, Satokangas I, Lerch BA, Rolland J, Smadja CM, Segami Marzal JC, Cooney CR, Feulner PGD, Domingos FMCB, et al. Toward the integration of speciation research. Evolutionary Journal of the Linnean Society. 2024;3(1):kzae001. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_hal_primary_oai_HAL_hal_04565336v1. doi:https://doi.org/10.1093/evolinnean/kzae001
  11. Stunkle CR, Davidson AT, Shuart WJ, McCoy MW, Vonesh JR. Taxa-specific responses to flooding shape patterns of abundance in river rock pools. Freshwater Science. 2021 [accessed 2024 Nov 5];40(2):397–406. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2546817292. doi:10.1086/714597
  12. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology. 2021 [accessed 2024 Nov 5];39(11):1348–1365. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8988251. doi:10.1038/s41587-021-01108-

Quantity or Quality? Nutritional Ecology in Wild Birds

- Allison CornellNovember 11, 2024 ▼

  1. Anders AD, Dearborn DC, Faaborg J, Thompson FR. Juvenile Survival in a Population of Neotropical Migrant Birds. Conservation Biology. 1997 [accessed 2024 Nov 19];11(3):698–707. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_16036304
  2. Berkeley LI, McCarty JP, Wolfenbarger LL. Postfledging Survival and Movement in Dickcissels (spiza Americana): Implications for Habitat Management and Conservation. The Auk. 2007 [accessed 2024 Nov 19];124(2):396–409. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_20437103. doi:10.1642/0004-8038(2007)124[396:PSAMID]2.0.CO;2
  3. Cornell A, Fowler MA, Zimmerman C, Khaku Z, Therrien J-F. The Role of Food Quantity and Prey Type in Nestling Development of American Kestrels. Journal of Raptor Research. 2023 [accessed 2024 Nov 19];57(2):210–219. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_3356_JRR_22_10. doi:10.3356/JRR-22-10
  4. Cornell A, Gibson KF, Williams TD. Physiological maturity at a critical life-history transition and flight ability at fledging. Functional Ecology. 2017 [accessed 2024 Nov 19];31(3):662–670. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1877819375
  5. Cornell A, Melo M, Zimmerman C, Therrien J-F. Nestling Physiology Is Independent of Somatic Development in a Common Raptor, the American Kestrel (Falco sparverius). Physiological & Biochemical Zoology. 2021 [accessed 2024 Nov 19];94(2):99–109. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2479041533. doi:10.1086/712816
  6. Falco sparverius. NCBI. [accessed 2024 Nov 19]. https://www.ncbi.nlm.nih.gov/datasets/taxonomy/56350/
  7. Kestrel female with young chicks. YouTube; 2021 [accessed 2024 Nov 19]. https://www.youtube.com/watch?v=i9Es1WegPx0
  8. Krementz DG, Nichols JD, Hines JE. Postfleding Survival of European Starlings. Ecology. 1989 [accessed 2024 Nov 19];70(3):646–655. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_2307_1940216. doi:10.2307/1940216
  9. Moore LC, Stutchbury BJM, Burke DM, Elliott KA. Effects of Forest Management on Postfledging Survival of Rose-breasted Grosbeaks (Pheucticus ludovicianus) - Efectos del Manejo de Bosque sobre la Supervivencia Posterior al Emplumamiento en Pheucticus ludovicianus. The Auk. 2010 [accessed 2024 Nov 19];127(1):185–194. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_923193209. doi:10.1525/auk.2009.09134
  10. Naef-Daenzer B, Widmer F, Nuber M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. Journal of Animal Ecology. 2001 [accessed 2024 Nov 19];70(5):730–738. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_18220285. doi:10.1046/j.0021-8790.2001.00533.x
  11. Overskaug K, Bolstad JP, Sunde P, Øien IJ. Fledgling Behavior and Survival in Northern Tawny Owls. The Condor. 1999 [accessed 2024 Nov 19];101(1):169–174. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_17249758. doi:10.2307/1370460
  12. Rush SA, Stutchbury BJM. Survival of Fledgling Hooded Warblers ( Wilsonia Citrina ) in Small and Large Forest Fragments. The Auk. 2008 [accessed 2024 Nov 19];125(1):183–191. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_19401115. doi:10.1525/auk.2008.125.1.183
  13. Sialia sialis. NCBI. [accessed 2024 Nov 19]. https://www.ncbi.nlm.nih.gov/datasets/taxonomy/172413/
  14. Simpson SJ, Le Couteur DG, James DE, George J, Gunton JE, Solon-Biet SM, Raubenheimer D. The Geometric Framework for Nutrition as a tool in precision medicine. Nutrition and Healthy Aging. 2017 [accessed 2024 Nov 19];4(3):217–226. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5734128. doi:10.3233/NHA-170027
  15. Sturnus vulgaris. NCBI. [accessed 2024 Nov 19]. https://www.ncbi.nlm.nih.gov/datasets/taxonomy/9172/
  16. Vaudo AD, Patch HM, Mortensen DA, Tooker JF, Grozinger CM. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proceedings of the National Academy of Sciences. 2016 [accessed 2024 Nov 19];113(28):E4035–E4042. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4948365. doi:10.1073/pnas.1606101113
  17. Yackel Adams AA, Skagen SK, Savidge JA. Modeling Post-Fledging Survival of Lark Buntings in Response to Ecological and Biological Factors. Ecology. 2006 [accessed 2024 Nov 19];87(1):178–188. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_67892258. doi:10.1890/04-192

Unflappable: Dynamics of Avian Anti-Stress Responses

- Stephen FergusonNovember 14, 2024 ▼

  1. Alaasam VJ, Hui C, Lomas J, Ferguson SM, Zhang Y, Yim WC, Ouyang JQ. What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution. iScience. 2024 [accessed 2024 Nov 19];27(2). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_84331d0f102e44278f78933416fbf26b. doi:10.1016/j.isci.2024.108864
  2. Alaasam VJ, Kernbach ME, Miller CR, Ferguson SM. The Diversity of Photosensitivity and its Implications for Light Pollution. Integrative and Comparative Biology. 2021 [accessed 2024 Nov 19];61(3):1170–1181. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2549199432. doi:10.1093/icb/icab156
  3. Ferguson SM, Gilson LN, Bateman PW. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behavioral Ecology and Sociobiology. 2019 [accessed 2024 Nov 19];73(11):147. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2315506297. doi:10.1007/s00265-019-2757-x
  4. Gould E, Fraser HS, Parker TH, Nakagawa S, Griffith SC, Vesk PA, Fidler F, Hamilton DG, Abbey-Lee RN, Abbott JK, et al. Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology. 2023 [accessed 2024 Nov 19]. https://ecoevorxiv.org/repository/view/6000/?utm_source=miragenews&utm_medium=miragenews&utm_campaign=news. doi:https://doi.org/10.32942/X2GG62
  5. Kernbach ME, Miller C, Alaasam V, Ferguson S, Francis CD. Introduction to the Symposium: Effects of Light Pollution Across Diverse Natural Systems. Integrative and Comparative Biology. 2021 [accessed 2024 Nov 19];61(3):1089–1097. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1093_icb_icab157. doi:10.1093/icb/icab157
  6. Wolf SE, Woodruff MJ, Chang van Oordt DA, Clotfelter ED, Cristol DA, Derryberry EP, Ferguson SM, Stanback MT, Taff CC, Vitousek MN, et al. Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history. Journal of Animal Ecology. [accessed 2024 Nov 19];n/a(n/a). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2973102068. doi:10.1111/1365-2656.1407

Climate Adaptation and Social Resilience: Bee Biology in a Changing World

- Madeleine OstwaldNovember 18, 2024 ▼

  1. Baudier KM, Ostwald MM, Haney BR, Calixto JM, Cossio FJ, Fewell JH. Social Factors in Heat Survival: Multiqueen Desert Ant Colonies Have Higher and More Uniform Heat Tolerance. Physiological and Biochemical Zoology. 2022 [accessed 2024 Nov 19];95(5):379–389. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1086_721251. doi:10.1086/721251
  2. Ostwald M, Chen K, Alexander N, Ding L, Betancourt VHG, Seltmann K. Climate explains global functional trait variation in bees. 2024 [accessed 2024 Nov 19]. https://www.authorea.com/users/515590/articles/1215597-climate-explains-global-functional-trait-variation-in-bees?commit=b9024b37d26b3e171e3c828872287a16625040f0. doi:https://doi.org/10.22541/au.172366189.98298020/v1
  3. Ostwald MM, Fox TP, Hillery WS, Shaffer Z, Harrison JF, Fewell JH. Group-living carpenter bees conserve heat and body mass better than solitary individuals in winter. Animal Behaviour. 2022 [accessed 2024 Nov 19];189:59–67. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_anbehav_2022_04_012. doi:10.1016/j.anbehav.2022.04.012
  4. Ostwald MM, Gonzalez VH, Chang C, Vitale N, Lucia M, Seltmann KC. Toward a Functional Trait Approach to Bee Ecology. Ecology and Evolution. 2024 [accessed 2024 Nov 19];14(10):e70465. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_54a9e9f7c71d48eca5154545c69f3267. doi:10.1002/ece3.70465
  5. Ostwald MM, Lyman BR, Shaffer Z, Fewell JH. Temporal and spatial dynamics of carpenter bee sociality revealed by CT imaging. Insectes Sociaux. 2020 [accessed 2024 Nov 19];67(2):203–212. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2407863183. doi:10.1007/s00040-020-00761-w
  6. Ostwald MM, da Silva CRB, Seltmann KC. How does climate change impact social bees and bee sociality? Journal of Animal Ecology. 2024 [accessed 2024 Nov 19];93(11):1610–1621. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1111_1365_2656_14160. doi:10.1111/1365-2656.14160
  7. Ostwald MM, Thrift CN, Seltmann KC. Phenotypic divergence in an island bee population: Applying geometric morphometrics to discriminate population-level variation in wing venation. Ecology and Evolution. 2023 [accessed 2024 Nov 19];13(5):e10085. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_5bb603c8e12c445cb976d75b823f824f. doi:10.1002/ece3.10085
  8. Ostwald MM, Venegas VA, Seltmann KC. Social conditions facilitate water conservation in a solitary bee. Journal of Insect Science. 2024 [accessed 2024 Nov 19];24(1):4. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1093_jisesa_ieae001. doi:10.1093/jisesa/ieae00

The Buzz About Social Insect Genetics and Pollinator Health

- Sarah OrrNovember 21, 2024 ▼

  1. Catto MA, Caine PB, Orr SE, Hunt BG, Goodisman MAD. Genomic analyses of the southern and eastern yellowjacket wasps (Hymenoptera: Vespidae) reveal evolutionary signatures of social life. Annals of the Entomological Society of America. 2024 [accessed 2024 Dec 2];117(6):286–300. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1093_aesa_saae023. doi:10.1093/aesa/saae023
  2. Cochran JK, Orr SE, Funk DH, Figurskey AC, Reiskind MH, Buchwalter DB. Variation in Freshwater Insect Osmoregulatory Traits: A Comparative Approach. Ecological and Evolutionary Physiology. 2024 [accessed 2024 Dec 2];97(3):164–179. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1086_730689. doi:10.1086/730689
  3. Orr SE, Collins LB, Jima DD, Buchwalter DB. Salinity-induced ionoregulatory changes in the gill proteome of the mayfly, Neocloeon triangulifer. Environmental Pollution. 2023 [accessed 2024 Dec 2];316:120609. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_envpol_2022_120609. doi:10.1016/j.envpol.2022.120609
  4. Orr SE, Goodisman MA. Social insect transcriptomics and the molecular basis of caste diversity. Current Opinion in Insect Science. 2023 [accessed 2024 Dec 2];57:101040. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_cois_2023_101040. doi:10.1016/j.cois.2023.101040
  5. Orr SE, Hedrick NA, Murray KA, Pasupuleti AK, Goodisman MAD. Novel insights into paternity skew in a polyandrous social wasp. Insect Science. 2024 Feb 28 [accessed 2024 Dec 2]:1744-7917.13343. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2932941175. doi:10.1111/1744-7917.13343
  6. Orr SE, Hedrick NA, Murray KA, Pasupuleti AK, Kovacs JL, Goodisman MAD. Genetic and environmental effects on morphological traits of social phenotypes in wasps. Heredity. 2024 [accessed 2024 Dec 2];133(2):126–136. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3072292048. doi:10.1038/s41437-024-00701-