Skip to Main Content

Boatwright Memorial Library

Science Seminars Guide

Many of the Science Departments have a related Seminar course with multiple presentations throughout the semester. This guide serves as a launching point for students to dig deeper into the resources related to some of those presentations.

Spring 2024 Chemistry Presentations

Under each presentation: 

you will find any selected resources as listed on https://blog.richmond.edu/chemseminar/ with links to the resource in the library's OneSearch if available.

Under some of the presentations: 

you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for Chemistry Seminar Presentations

*Zotero Folder reflects updates quickest*

Neat, Simple, and Wrong: Just-So Stories Regarding Non-Bonded Interactions
- Dr. John Herbert

Generating chiral light from molecules spanning almost the whole periodic table
- Dr. Gaël Ung

  1. Adewuyi, J. A.; Schley, N. D.; Ung, G. Vanol-Supported Lanthanide Complexes for Strong Circularly Polarized Luminescence at 1550 Nm. Chemistry – A European Journal 2023, 29 (36), e202300800. https://doi.org/10.1002/chem.202300800.
  2. Arrico, L.; Di Bari, L.; Zinna, F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry – A European Journal 2021, 27 (9), 2920–2934. https://doi.org/10.1002/chem.202002791.
  3. Bailey, J.; Chrysostomou, A.; Hough, J. H.; Gledhill, T. M.; McCall, A.; Clark, S.; Ménard, F.; Tamura, M. Circular Polarization in Star- Formation Regions: Implications for Biomolecular Homochirality. Science 1998, 281 (5377), 672–674. https://doi.org/10.1126/science.281.5377.672.
  4. Chiou, T.-H.; Kleinlogel, S.; Cronin, T.; Caldwell, R.; Loeffler, B.; Siddiqi, A.; Goldizen, A.; Marshall, J. Circular Polarization Vision in a Stomatopod Crustacean. Current Biology 2008, 18 (6), 429–434. https://doi.org/10.1016/j.cub.2008.02.066.
  5. Deng, M.; Schley, N. D.; Ung, G. High Circularly Polarized Luminescence Brightness from Analogues of Shibasaki’s Lanthanide Complexes. Chem. Commun. 2020, 56 (94), 14813–14816. https://doi.org/10.1039/D0CC06568D.
  6. Gagnon, Y. L.; Templin, R. M.; How, M. J.; Marshall, N. J. Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Current Biology 2015, 25 (23), 3074–3078. https://doi.org/10.1016/j.cub.2015.10.047.
  7. Near-Infrared (NIR) Luminescence from Lanthanide(III) Complexes. In Rare earth coordination chemistry: fundamentals and applications; Huang, C.-H., Ed.; John Wiley& Sons: Singapore ; Hoboken, NJ, 2010.
  8. Kleinlogel, S.; White, A. G. The Secret World of Shrimps: Polarisation Vision at Its Best. PLoS One 2008, 3 (5), e2190. https://doi.org/10.1371/journal.pone.0002190.
  9. Kwon, J.; Nakagawa, T.; Tamura, M.; Hough, J. H.; Kandori, R.; Choi, M.; Kang, M.; Cho, J.; Nakajima, Y.; Nagata, T. Near-Infrared Polarimetry of the Outflow Source AFGL 6366S: Detection of Circular Polarization. AJ 2018, 156 (1), 1. https://doi.org/10.3847/1538-3881/aac389.
  10. Mukthar, N. F. M.; Schley, N. D.; Ung, G. Strong Circularly Polarized Luminescence at 1550 Nm from Enantiopure Molecular Erbium Complexes. J. Am. Chem. Soc. 2022, 144 (14), 6148–6153. https://doi.org/10.1021/jacs.2c01134.
  11. Schnable, D.; Ung, G. Augmentation of NIR Circularly Polarized Luminescence Activity in Shibasaki-Type Lanthanide Complexes Supported by the Spirane Sphenol, 2024. https://ung.chem.uconn.edu/pubs/.
  12. Sharma, V.; Crne, M.; Park, J. O.; Srinivasarao, M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science 2009, 325 (5939), 449–451. https://doi.org/10.1126/science.1172051.
  13. Willis, B.-A. N.; Schnable, D.; Schley, N. D.; Ung, G. Spinolate Lanthanide Complexes for High Circularly Polarized Luminescence Metrics in the Visible and Near-Infrared. J. Am. Chem. Soc. 2022, 144 (49), 22421–22425. https://doi.org/10.1021/jacs.2c10364.
  14. Wynberg, H.; Meijer, E. W.; Hummelen, J. C.; Dekkers, H. P. J. M.; Schippers, P. H.; Carlson, A. D. Circular Polarization Observed in Bioluminescence. Nature 1980, 286 (5773), 641–642. https://doi.org/10.1038/286641a0.
  15. Ung Research Group. University of Connecticut. https://ung.chem.uconn.edu/.

Rhodium-Catalyzed C–H Activation for the Synthesis, Elaboration, and Application of N-Heterocyclic Compounds
- Dr. Danielle Confair

  1. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C−H Activation. J. Am. Chem. Soc. 2008, 130 (11), 3645–3651. https://doi.org/10.1021/ja7104784.
  2. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation. Chem. Rev. 2010, 110 (2), 624–655. https://doi.org/10.1021/cr900005n.
  3. Confair, D. N.; Greenwood, N. S.; Mercado, B. Q.; Ellman, J. A. Rh(III)-Catalyzed Imidoyl C–H Carbamylation and Cyclization to Bicyclic [1,3,5]Triazinones. Org. Lett. 2020, 22 (22), 8993–8997. https://doi.org/10.1021/acs.orglett.0c03393.
  4. Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc. 2010, 132 (13), 4971–4971. https://doi.org/10.1021/ja101189c.
  5. Downey, C. W.; Confair, D. N.; Liu, Y.; Heafner, E. D. One-Pot Enol Silane Formation–Alkylation of Ketones with Propargyl Carboxylates Promoted by Trimethylsilyl Trifluoromethanesulfonate. J. Org. Chem. 2018, 83 (20), 12931–12938. https://doi.org/10.1021/acs.joc.8b01997.
  6. Downey, C. W.; Maxwell, E. N.; Confair, D. N. Silyl Triflate-Accelerated Additions of Catalytically Generated Zinc Acetylides to N-Phenyl Nitrones. Tetrahedron Letters 2014, 55 (35), 4959–4961. https://doi.org/10.1016/j.tetlet.2014.07.015.
  7. Duttwyler, S.; Chen, S.; Takase, M. K.; Wiberg, K. B.; Bergman, R. G.; Ellman, J. A. Proton Donor Acidity Controls Selectivity in Nonaromatic Nitrogen Heterocycle Synthesis. Science 2013, 339 (6120), 678–682.
  8. Duttwyler, S.; Lu, C.; Rheingold, A. L.; Bergman, R. G.; Ellman, J. A. Highly Diastereoselective Synthesis of Tetrahydropyridines by a C–H Activation–Cyclization–Reduction Cascade. J. Am. Chem. Soc. 2012, 134 (9), 4064–4067. https://doi.org/10.1021/ja2119833.
  9. Fukui, M.; Rodriguiz, R. M.; Zhou, J.; Jiang, S. X.; Phillips, L. E.; Caron, M. G.; Wetsel, W. C. Vmat2 Heterozygous Mutant Mice Display a Depressive-Like Phenotype. J. Neurosci. 2007, 27 (39), 10520–10529. https://doi.org/10.1523/JNEUROSCI.4388-06.2007.
  10. Ghosh, E.; Kumari, P.; Jaiman, D.; Shukla, A. K. Methodological Advances: The Unsung Heroes of the GPCR Structural Revolution. Nat Rev Mol Cell Biol 2015, 16 (2), 69–81. https://doi.org/10.1038/nrm3933.
  11. Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schiöth, H. B.; Gloriam, D. E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat Rev Drug Discov 2017, 16 (12), 829–842. https://doi.org/10.1038/nrd.2017.178.
  12. Kaplan, A. L.; Confair, D. N.; Kim, K.; Barros-álvarez, X.; Rodriguiz, R. M.; Yang, Y.; Kweon, O. S.; Che, T.; McCorvy, J. D.; Kamber, D. N.; Phelan, J. P.; Martins, L. C.; Pogorelov, V. M.; Diberto, J. F.; Slocum, S. T.; Huang, X.-P.; Kumar, J. M.; Robertson, M. J.; Panova, O.; Seven, A. B.; Wetsel, A. Q.; Wetsel, W. C.; Irwin, J. J.; Skiniotis, G.; Shoichet, B. K.; Roth, B. L.; Ellman, J. A. Bespoke Library Docking for 5-HT2A Receptor Agonists with Antidepressant Activity. Nature 2022, 610 (7932), 582-3,591A-591W. https://doi.org/10.1038/s41586-022-05258-z.
  13. Kooistra, A. J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G. M.; Gloriam, D. E. GPCRdb in 2021: Integrating GPCR Sequence, Structure and Function. Nucleic Acids Research 2021, 49 (D1), D335–D343. https://doi.org/10.1093/nar/gkaa1080.
  14. Nutt, D.; Erritzoe, D.; Carhart-Harris, R. Psychedelic Psychiatry’s Brave New World. Cell 2020, 181 (1), 24–28. https://doi.org/10.1016/j.cell.2020.03.020.
  15. Rodriguiz, R. M.; Nadkarni, V.; Means, C. R.; Pogorelov, V. M.; Chiu, Y.-T.; Roth, B. L.; Wetsel, W. C. LSD-Stimulated Behaviors in Mice Require β-Arrestin 2 but Not β-Arrestin 1. Sci Rep 2021, 11 (1), 17690. https://doi.org/10.1038/s41598-021-96736-3.
  16. Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.; Schafer, L. L.; Musaev, D. G.; Wencel-Delord, J.; Roberts, C. A.; Sarpong, R.; Wilson, Z. E.; Brimble, M. A.; Johansson, M. J.; Ackermann, L. C–H Activation. Nat Rev Methods Primers 2021, 1 (1), 1–31. https://doi.org/10.1038/s43586-021-00041-2.
  17. Roth, B. L. Irving Page Lecture: 5-HT2A Serotonin Receptor Biology: Interacting Proteins, Kinases and Paradoxical Regulation. Neuropharmacology 2011, 61 (3), 348–354. https://doi.org/10.1016/j.neuropharm.2011.01.012.
  18. Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C–H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47 (17), 6603–6743. https://doi.org/10.1039/C8CS00201K.
  19. Tran, G.; Confair, D.; Hesp, K. D.; Mascitti, V.; Ellman, J. A. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C–H Activation. J. Org. Chem. 2017, 82 (17), 9243–9252. https://doi.org/10.1021/acs.joc.7b01723.
  20. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57 (24), 10257–10274. https://doi.org/10.1021/jm501100b.
  21. Yang, B. V.; O’Rourke, D.; Li, J. Mild and Selective Debenzylation of Tertiary Amines Using α-Chloroethyl Chloroformate. Synlett 1993, 1993 (3), 195–196. https://doi.org/10.1055/s-1993-22398.
  22. Ellman Laboratory. Yale University. https://ellman.chem.yale.edu/.
  23. Downey Group. University of Richmond. https://blog.richmond.edu/downey/.

The Global Energy Challenge: Food and Fuel from Air, Water and Sunlight
- Dr. Daniel Nocera

  1. Alfaraidi, A. M.; Kudisch, B.; Ni, N.; Thomas, J.; George, T. Y.; Rajabimoghadam, K.; Jiang, H. J.; Nocera, D. G.; Aziz, M. J.; Liu, R. Y. Reversible CO2 Capture and On-Demand Release by an Acidity-Matched Organic Photoswitch. J. Am. Chem. Soc. 2023, 145 (49), 26720–26727. https://doi.org/10.1021/jacs.3c08471.
  2. Campbell, B. M.; Gordon, J. B.; Raguram, E. R.; Gonzalez, M. I.; Reynolds, K. G.; Nava, M.; Nocera, D. G. Electrophotocatalytic Perfluoroalkylation by LMCT Excitation of Ag(II) Perfluoroalkyl Carboxylates. Science 2024, 383 (6680), 279–284. https://doi.org/10.1126/science.adk4919.
  3. Johnston, B.; Loh, D. M.; Nocera, D. G. Substrate-Mediator Duality of 1,4-Dicyanobenzene in Electrochemical C(Sp2)−C(Sp3) Bond Formation with Alkyl Bromides. Angewandte Chemie International Edition 2023, 62 (49), e202312128. https://doi.org/10.1002/anie.202312128.
  4. Keane, T. P.; Veroneau, S. S.; Hartnett, A. C.; Nocera, D. G. Generation of Pure Oxygen from Briny Water by Binary Catalysis. J. Am. Chem. Soc. 2023, 145 (9), 4989–4993. https://doi.org/10.1021/jacs.3c00176.
  5. Lemon, C. M.; Powers, D. C.; Huynh, M.; Maher, A. G.; Phillips, A. A.; Tripet, B. P.; Nocera, D. G. Ag(III)···Ag(III) Argentophilic Interaction in a Cofacial Corrole Dyad. Inorg. Chem. 2023, 62 (1), 3–17. https://doi.org/10.1021/acs.inorgchem.2c02285.
  6. Sun, R.; Ruccolo, S.; Nascimento, D. L.; Qin, Y.; Hibbert, N.; Nocera, D. G. Chemoselective Bond Activation by Unidirectional and Asynchronous PCET Using Ketone Photoredox Catalysts. Chem. Sci. 2023, 14 (47), 13776–13782. https://doi.org/10.1039/D3SC04362B.
  7. Veroneau, S. S.; Thorarinsdottir, A. E.; Loh, D. M.; Hartnett, A. C.; Keane, T. P.; Nocera, D. G. Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts. Chem. Mater. 2023, 35 (8), 3218–3225. https://doi.org/10.1021/acs.chemmater.3c00032.
  8. Yan, Z.; Reynolds, K. G.; Sun, R.; Shin, Y.; Thorarinsdottir, A. E.; Gonzalez, M. I.; Kudisch, B.; Galli, G.; Nocera, D. G. Oxidation Chemistry of Bicarbonate and Peroxybicarbonate: Implications for Carbonate Management in Energy Storage. J. Am. Chem. Soc. 2023, 145 (40), 22213–22221. https://doi.org/10.1021/jacs.3c08144.
  9. Zhu, Q.; Costentin, C.; Stubbe, J.; Nocera, D. G. Disulfide Radical Anion as a Super-Reductant in Biology and Photoredox Chemistry. Chem. Sci. 2023, 14 (25), 6876–6881. https://doi.org/10.1039/D3SC01867A.

Quantifying and Partitioning Substituent Effects using Sigma Hole Potentials
- Nam Pham (student speaker)

Effects of polymer solution entanglement on the mechanics of electrospun polycaprolactone fibers
- Manasa Rajeev (student speaker)

New Synthetic Methods for Deoxygenative Diversification for Carboxylic Acids
- Byoungmoo Kim

  1. Bower, S.; Kreutzer, K. A.; Buchwald, S. L. A Mild General Procedure for the One-Pot Conversion of Amides to Aldehydes. Angewandte Chemie International Edition in English 1996, 35 (13–14), 1515–1516. https://doi.org/10.1002/anie.199615151.
  2. Chandrika, N. T.; Garneau-Tsodikova, S. Comprehensive Review of Chemical Strategies for the Preparation of New Aminoglycosides and Their Biological Activities. Chem. Soc. Rev. 2018, 47 (4), 1189–1249. https://doi.org/10.1039/C7CS00407A.
  3. Feng, M.; Zhang, H.; Maulide, N. Challenges and Breakthroughs in Selective Amide Activation. Angewandte Chemie International Edition 2022, 61 (49), e202212213. https://doi.org/10.1002/anie.202212213.
  4. Hartwig, J. F. Catalyst-Controlled Site-Selective Bond Activation. Acc. Chem. Res. 2017, 50 (3), 549–555. https://doi.org/10.1021/acs.accounts.6b00546.
  5. Huang, Z.; Dong, G. Site-Selectivity Control in Organic Reactions: A Quest To Differentiate Reactivity among the Same Kind of Functional Groups. Acc. Chem. Res. 2017, 50 (3), 465–471. https://doi.org/10.1021/acs.accounts.6b00476.
  6. Katsuki, T.; Sharpless, K. B. The First Practical Method for Asymmetric Epoxidation. J. Am. Chem. Soc. 1980, 102 (18), 5974–5976. https://doi.org/10.1021/ja00538a077.
  7. Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. Ti-Catalyzed Enantioselective Addition of Cyanide to Imines. A Practical Synthesis of Optically Pure α-Amino Acids. J. Am. Chem. Soc. 1999, 121 (17), 4284–4285. https://doi.org/10.1021/ja9840605.
  8. Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63 (21), 12290–12358. https://doi.org/10.1021/acs.jmedchem.0c00530.
  9. Le, D. N.; Hansen, E.; Khan, H. A.; Kim, B.; Wiest, O.; Dong, V. M. Hydrogenation Catalyst Generates Cyclic Peptide Stereocentres in Sequence. Nature Chem 2018, 10 (9), 968–973. https://doi.org/10.1038/s41557-018-0089-5.
  10. Liu, Y.; Kim, B.; Taylor, S. D. Synthesis of 4-Formyl Estrone Using a Positional Protecting Group and Its Conversion to Other C-4-Substituted Estrogens. J. Org. Chem. 2007, 72 (23), 8824–8830. https://doi.org/10.1021/jo7017075.
  11. Matheau-Raven, D.; Gabriel, P.; Leitch, J. A.; Almehmadi, Y. A.; Yamazaki, K.; Dixon, D. J. Catalytic Reductive Functionalization of Tertiary Amides Using Vaska’s Complex: Synthesis of Complex Tertiary Amine Building Blocks and Natural Products. ACS Catal. 2020, 10 (15), 8880–8897. https://doi.org/10.1021/acscatal.0c02377.
  12. Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
  13. Phan, D. H. T.; Kim, B.; Dong, V. M. Phthalides by Rhodium-Catalyzed Ketone Hydroacylation. J. Am. Chem. Soc. 2009, 131 (43), 15608–15609. https://doi.org/10.1021/ja907711a.
  14. Shugrue, C. R.; Miller, S. J. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chem. Rev. 2017, 117 (18), 11894–11951. https://doi.org/10.1021/acs.chemrev.7b00022.
  15. Toste, F. D.; Sigman, M. S.; Miller, S. J. Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Acc. Chem. Res. 2017, 50 (3), 609–615. https://doi.org/10.1021/acs.accounts.6b00613.
  16. Trillo, P.; Adolfsson, H. Direct Catalytic Reductive N-Alkylation of Amines with Carboxylic Acids: Chemoselective Enamine Formation and Further Functionalizations. ACS Catal. 2019, 9 (8), 7588–7595. https://doi.org/10.1021/acscatal.9b01974.
  17. The Kim Group | Synthetic Organic Chemistry and Catalysis. Clemson University. https://scienceweb.clemson.edu/kimgroup/.

One-pot enol silane formation — allylation of ketones promoted by trimethylsilyl trifluoromethanesulfonate
- Alexa Connors (student speaker)

The Effect of Solvent Identity and Hydride-Donor on the Reduction of CO2 into Useful Fuels
- Abigail McEntire (student speaker)

  1. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822–4827. https://doi.org/10.1021/acscatal.7b00687.
  2. Gao, F.-Y.; Bao, R.-C.; Gao, M.-R.; Yu, S.-H. Electrochemical CO2-to-CO Conversion: Electrocatalysts, Electrolytes, and Electrolyzers. J. Mater. Chem. A 2020, 8 (31), 15458–15478. https://doi.org/10.1039/D0TA03525D.
  3. Graham, D. SOP4CV - Standard Operating Procedures for Cyclic Voltammetry; 2017. https://sop4cv.com/
  4. Karak, P.; Mandal, S. K.; Choudhury, J. Bis-Imidazolium-Embedded Heterohelicene: A Regenerable NADP+ Cofactor Analogue for Electrocatalytic CO2 Reduction. J. Am. Chem. Soc. 2023, 145 (13), 7230–7241. https://doi.org/10.1021/jacs.2c12883.
  5. Min, X.; Kanan, M. W. Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway. J. Am. Chem. Soc. 2015, 137 (14), 4701–4708. https://doi.org/10.1021/ja511890h.
  6. Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5 (8), 4586–4591. https://doi.org/10.1021/acscatal.5b00922.
  7. Torbensen, K.; Joulié, D.; Ren, S.; Wang, M.; Salvatore, D.; Berlinguette, C. P.; Robert, M. Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction. ACS Energy Lett. 2020, 5 (5), 1512–1518. https://doi.org/10.1021/acsenergylett.0c00536.

Identification of Xanthones as Selective Killers of CancerCells Overexpressing the ABC Transporter MRP1
- Kathy Colin (student speaker)

  1. CAS, a division of the American Chemical Society. Glutathione. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=70-18-8&search=glutathione.
  2. CAS, a division of the American Chemical Society. Verapamil. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=52-53-9&search=verapamil.
  3. CAS, a division of the American Chemical Society. Xanthone. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=90-47-1&search=xanthone.
  4. EUPATI. Pharmacokinetics; n.d. https://toolbox.eupati.eu/glossary/pharmacokinetics/.
  5. Thurm, C.; Schraven, B.; Kahlfuss, S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. IJMS 2021, 22 (17), 9186. https://doi.org/10.3390/ijms22179186.
  6. World Health Organization. Global Tuberculosis Report 2014; World Health Organization: Geneva, 2014. https://iris.who.int/handle/10665/137094.
  7. Zhou, S. F. Role of Multidrug Resistance Associated Proteins in Drug Development. Drug Discov Ther 2008, 2 (6), 305–332.
  8. Pollock Research Lab. University of Richmond. https://blog.richmond.edu/pollocklab/.
  9. Student Programs. AbbVie. https://www.abbvie.com/join-us/opportunities/student-programs.html.
  10. Undergraduate Research in Chemical Biology. Vanderbilt College of Arts and Science. https://www.vanderbilt.edu/reu/index.php.

Exploration of Pynaphthyridine and Binaphthyridine Manganese(I) Tricarbonyl Complexes: Influence on Carbon Dioxide Reduction Electrocatalysis
- Luke Simkins (student speaker)

  1. Cohen, K.; Simonyan, H.; Ortiz, M.; Solomon, B.; Simkins, L.; Dominey, R.; Goldman, E.; Bocarsly, A. Exploration of Pynaphthyridine and Binaphthyridine Manganese(I) Tricarbonyl Complexes: Influence on Carbon Dioxide Reduction Electrocatalysis. 
    • submitted to Organometallics

  1. Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; Stocker, T. F. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453 (7193), 379–382. https://doi.org/10.1038/nature06949.
  2. MacFarling Meure, C.; Etheridge, D.; Trudinger, C.; Steele, P.; Langenfelds, R.; van Ommen, T.; Smith, A.; Elkins, J. Law Dome CO2, CH4 and N2O Ice Core Records Extended to 2000 Years BP. Geophysical Research Letters 2006, 33 (14). https://doi.org/10.1029/2006GL026152.
  3. Neftel, A.; Moor, E.; Oeschger, H.; Stauffer, B. Evidence from Polar Ice Cores for the Increase in Atmospheric CO2 in the Past Two Centuries. Nature 1985, 315 (6014), 45–47. https://doi.org/10.1038/315045a0.
  4. Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V. Y.; Lorius, C.; PÉpin, L.; Ritz, C.; Saltzman, E.; Stievenard, M. Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature 1999, 399 (6735), 429–436. https://doi.org/10.1038/20859.
  5. Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Battle, M. O.; Langenfelds, R. L.; Steele, L. P.; Curran, M.; Bender, M.; White, J. W. C.; Jenk, T. M.; Blunier, T.; Francey, R. J. A Revised 1000 Year Atmospheric δ13C-CO2 Record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres 2013, 118 (15), 8482–8499. https://doi.org/10.1002/jgrd.50668.
  6. Siegenthaler, U.; Stocker, T. F.; Monnin, E.; Lüthi, D.; Schwander, J.; Stauffer, B.; Raynaud, D.; Barnola, J.-M.; Fischer, H.; Masson-Delmotte, V.; Jouzel, J. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science 2005, 310 (5752), 1313–1317. https://doi.org/10.1126/science.1120130.
  7. Home | Scripps CO2 Program. https://scrippsco2.ucsd.edu/.

The Continuous Flow Synthesis of Polyfunctionalized Pyrroles
- Kingsley Dwomoh (student speaker)

  1. CAS, a division of the American Chemical Society. (Chloromethylene)dimethylammonium chloride. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=3724-43-4.
  2. Giles, P. R.; Marson, C. M. Dimethylchloromethyleneammonium Chloride. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd, 2001. https://doi.org/10.1002/047084289X.rd319m.

Comparison of properties of isomeric pyrrolyl phosphine ligands
- Vicky Osenga (student speaker)

Altering Product Selectivity for Ru-based CO2 Reduction Catalysts
- Ben Dwyer (student speaker)

One-pot synthesis of 4-isoxazolines from chalcones promoted by trimethylsilyl trifluoromethanesulfonate
- Greg Hughes (student speaker)

Substitution of sulfur-containing compounds
- Abigail Dalton (student speaker)

Chemistry Seminar Presentations Archives

Over the following tabs, you will find the Chemistry Seminar listings from previous semesters. 

Sodium ion batteries rising as a key energy storage technology
- Prof. Feng Lin

Characterization of Streptomyces Natural Products in New Zealand
- Pro. Jonathan Dattelbaum

Non-electrophilic activators of NRF2, a transcription factor involved in the oxidative stress response
- Prof. Terry Moore

Developing a Predictive Model for the Asymmetric Hydrogenation of Ketones
- Evelyn Ramirez (Student Speaker)

Investigation of CO2 Reduction Mechanism with Isopropyl Amine and Other Amine Species
- Charli Chen (Student Speaker)

Synthesis and Photophysics of First-Row Transition Metal Oxide Semiconductor Nanomaterials
Prof. Kathryn Knowles

Organic Chemistry in Space: Formation Mechanisms and Stepwise Solvation of Astrochemical Relevant Ions in the Gas Phase
- Prof. Samy El-Shall

Halogen-Bonding Capable Gold Nanoparticles — Synthesis, Modification and Application in Molecular Detection
- Karthik Lalwani (student speaker)

578 Variations on the Bergman Cyclization
- Sebastian Mendoza-Gomez (student speaker)

Asymmetric Synthesis of (+)-Collybolide and Reevaluation of Kappa-Opioid Receptor Agonism
- Dr. Sophie Shevick

Increasing global access to the high-volume HIV drug nevirapine through process intensification
- Felix Minami (student speaker)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.