Skip to Main Content

Boatwright Memorial Library

Fall 2024 Chemistry Presentations

Under each presentation: 

you will find any selected resources as listed on https://blog.richmond.edu/chemseminar/ with links to the resource in the library's OneSearch if available.

Under some of the presentations: 

you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for Chemistry Seminar Presentations

*Zotero Folder reflects updates quickest*

Acrylic Copolymer Structures from Photoredox-Mediated RAFT Polymerizations

- Professor Adrian FiggSeptember 6, 2024 ▼

  1. Baker, J. G.; Zhang, R.; Figg, C. A. Installing a Single Monomer within Acrylic Polymers Using Photoredox Catalysis. J. Am. Chem. Soc. 2024, 146 (1), 106–111. https://doi.org/10.1021/jacs.3c12221. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2905524757.

  1. Elling, B. R.; Su, J. K.; Feist, J. D.; Xia, Y. Precise Placement of Single Monomer Units in Living Ring-Opening Metathesis Polymerization. Chem 2019, 5 (10), 2691–2701. https://doi.org/10.1016/j.chempr.2019.07.017.
  2. Flory, P. J. Principles of Polymer Chemistry.; The George Fisher Baker non-resident lectureship in chemistry at Cornell University; Cornell University Press: Ithaca, 1953.
  3. Foster, J. C.; Damron, J. T.; Zhang, H. Simple Monomers for Precise Polymer Functionalization During Ring-Opening Metathesis Polymerization. Macromolecules 2023, 56 (19), 7931–7938. https://doi.org/10.1021/acs.macromol.3c01068.
  4. Gruendling, T.; Kaupp, M.; Blinco, J. P.; Barner-Kowollik, C. Photoinduced Conjugation of Dithioester- and Trithiocarbonate-Functional RAFT Polymers with Alkenes. Macromolecules 2011, 44 (1), 166–174. https://doi.org/10.1021/ma101893u.
  5. Huang, Z.; Noble, B. B.; Corrigan, N.; Chu, Y.; Satoh, K.; Thomas, D. S.; Hawker, C. J.; Moad, G.; Kamigaito, M.; Coote, M. L.; Boyer, C.; Xu, J. Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. J. Am. Chem. Soc. 2018, 140 (41), 13392–13406. https://doi.org/10.1021/jacs.8b08386.
  6. Kaminsky, W. Olefin Polymerization Catalyzed by Metallocenes1. In Advances in Catalysis; Academic Press, 2001; Vol. 46, pp 89–159. https://doi.org/10.1016/S0360-0564(02)46022-1.
  7. Moriceau, G.; Gody, G.; Hartlieb, M.; Winn, J.; Kim, H.; Mastrangelo, A.; Smith, T.; Perrier, S. Functional Multisite Copolymer by One-Pot Sequential RAFT Copolymerization of Styrene and Maleic Anhydride. Polym. Chem. 2017, 8 (28), 4152–4161. https://doi.org/10.1039/C7PY00787F.
  8. Shanmugam, S.; Xu, J.; Boyer, C. Light-Regulated Polymerization under Near-Infrared/Far-Red Irradiation Catalyzed by Bacteriochlorophyll a. Angewandte Chemie International Edition 2016, 55 (3), 1036–1040. https://doi.org/10.1002/anie.201510037.
  9. Silva, T. B.; Spulber, M.; Kocik, M. K.; Seidi, F.; Charan, H.; Rother, M.; Sigg, S. J.; Renggli, K.; Kali, G.; Bruns, N. Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization. Biomacromolecules 2013, 14 (8), 2703–2712. https://doi.org/10.1021/bm400556x.
  10. Simakova, A.; Mackenzie, M.; Averick, S. E.; Park, S.; Matyjaszewski, K. Bioinspired Iron-Based Catalyst for Atom Transfer Radical Polymerization. Angewandte Chemie International Edition 2013, 52 (46), 12148–12151. https://doi.org/10.1002/anie.201306337.
  11. Vandenbergh, J.; Reekmans, G.; Adriaensens, P.; Junkers, T. Synthesis of Sequence Controlled Acrylate Oligomers via Consecutive RAFT Monomer Additions. Chem. Commun. 2013, 49 (88), 10358–10360. https://doi.org/10.1039/C3CC45994B.
  12. Zamfir, M.; Lutz, J.-F. Ultra-Precise Insertion of Functional Monomers in Chain-Growth Polymerizations. Nat Commun 2012, 3 (1), 1138. https://doi.org/10.1038/ncomms2151.
  13. Zhou, F.; Li, R.; Wang, X.; Du, S.; An, Z. Non-Natural Photoenzymatic Controlled Radical Polymerization Inspired by DNA Photolyase. Angewandte Chemie International Edition 2019, 58 (28), 9479–9484. https://doi.org/10.1002/anie.201904413.
  14. Figg Research Group. Virginia Tech. https://figglab.com (accessed 2024-09-10).
  15. Adrian Figg. Virginia Tech. https://chem.vt.edu/content/chem_vt_edu/en/people/faculty/teaching-and-research/afigg.html (accessed 2024-09-10).

Exploring Next-Generation Quantum Chemistry Calculations: Leveraging a Toolbox with Grassmannians, Fragmentation, and Machine Learning

- Professor Ka Un LauSeptember 13, 2024 ▼

  1. Piela, L. Ideas of Quantum Chemistry, Third edition.; Elsevier: Amsterdam, Netherlands ; Cambridge, MA, United States, 2020.
  2. Al-Hamdani, Y. S.; Nagy, P. R.; Zen, A.; Barton, D.; Kállay, M.; Brandenburg, J. G.; Tkatchenko, A. Interactions between Large Molecules Pose a Puzzle for Reference Quantum Mechanical Methods. Nat Commun 2021, 12 (1), 3927. https://doi.org/10.1038/s41467-021-24119-3.
  3. Ballesteros, F.; Lao, K. U. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion. J. Chem. Theory Comput. 2022, 18 (1), 179–191. https://doi.org/10.1021/acs.jctc.1c00765.
  4. Chen, J.; Ahasan, M. R.; Oh, J.-S.; Tan, J. A.; Hennessey, S.; Kaid, M. M.; El-Kaderi, H. M.; Zhou, L.; Lao, K. U.; Wang, R.; Wang, W.-N. Highly Efficient CO 2 Electrochemical Reduction on Dual Metal (Co–Ni)–Nitrogen Sites. J. Mater. Chem. A 2024, 12 (8), 4601–4609. https://doi.org/10.1039/D3TA05654F.
  5. Clark, T. M.; Anderson, E.; Dickson-Karn, N. M.; Soltanirad, C.; Tafini, N. Comparing the Performance of College Chemistry Students with ChatGPT for Calculations Involving Acids and Bases. J. Chem. Educ. 2023, 100 (10), 3934–3944. https://doi.org/10.1021/acs.jchemed.3c00500.
  6. Folmsbee, D.; Hutchison, G. Assessing Conformer Energies Using Electronic Structure and Machine Learning Methods. Int J of Quantum Chemistry 2021, 121 (1), e26381. https://doi.org/10.1002/qua.26381.
  7. Fu, X.; Wu, Z.; Wang, W.; Xie, T.; Keten, S.; Gomez-Bombarelli, R.; Jaakkola, T. S. Forces Are Not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations. Transactions on Machine Learning Research 2023.
  8. Graves, L. S.; Sarkar, R.; Baker, J.; Lao, K. U.; Arachchige, I. U. Structure- and Morphology-Controlled Synthesis of Hexagonal Ni 2– x Zn x P Nanocrystals and Their Composition-Dependent Electrocatalytic Activity for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2024, 7 (14), 5679–5690. https://doi.org/10.1021/acsaem.4c00539.
  9. Graves, L. S.; Sarkar, R.; Lao, K. U.; Arachchige, I. U. Composition-Dependent Electrocatalytic Activity of Zn-Doped Ni 5 P 4 Nanocrystals for the Hydrogen Evolution Reaction. Chem. Mater. 2023, 35 (17), 6966–6978. https://doi.org/10.1021/acs.chemmater.3c01229.
  10. Le Breton, G.; Bonhomme, O.; Benichou, E.; Loison, C. FROG: Exploiting All-Atom Molecular Dynamics Trajectories to Calculate Linear and Non-Linear Optical Responses of Molecular Liquids within Dalton’s QM/MM Polarizable Embedding Scheme. The Journal of Chemical Physics 2024, 160 (19), 194103. https://doi.org/10.1063/5.0203424.
  11. Li, W.; Wang, D.; Lao, K. U.; Wang, X. Buffer Concentration Dramatically Affects the Stability of S-Nitrosothiols in Aqueous Solutions. Nitric Oxide 2022, 118, 59–65. https://doi.org/10.1016/j.niox.2021.11.002.
  12. Li, W.; Wang, D.; Lao, K. U.; Wang, X. Inclusion Complexation of S -Nitrosoglutathione for Sustained Nitric Oxide Release from Catheter Surfaces: A Strategy to Prevent and Treat Device-Associated Infections. ACS Biomater. Sci. Eng. 2023, 9 (3), 1694–1705. https://doi.org/10.1021/acsbiomaterials.2c01284.
  13. López Peña, H. A.; Shusterman, J. M.; Ampadu Boateng, D.; Lao, K. U.; Tibbetts, K. M. Coherent Control of Molecular Dissociation by Selective Excitation of Nuclear Wave Packets. Front. Chem. 2022, 10, 859095. https://doi.org/10.3389/fchem.2022.859095.
  14. López Peña, H. A.; Shusterman, J. M.; Dalkiewicz, C.; McPherson, S. L.; Dunstan, C.; Sangroula, K.; Lao, K. U.; Tibbetts, K. M. Photodissociation Dynamics of the Highly Stable Ortho -Nitroaniline Cation. J. Phys. Chem. A 2024, 128 (9), 1634–1645. https://doi.org/10.1021/acs.jpca.3c08364.
  15. Mason, K. A.; Pearcy, A. C.; Lao, K. U.; Christensen, Z. A.; El-Shall, M. S. Non-Covalent Interactions of Hydrogen Cyanide and Acetonitrile with the Quinoline Radical Cation via Ionic Hydrogen Bonding. Chemical Physics Letters 2020, 754, 137744. https://doi.org/10.1016/j.cplett.2020.137744.
  16. Ng, K. C.; Adel, T.; Lao, K. U.; Varmecky, M. G.; Liu, Z.; Arrad, M.; Allen, H. C. Iron(III) Chloro Complexation at the Air–Aqueous FeCl 3 Interface via Second Harmonic Generation Spectroscopy. J. Phys. Chem. C 2022, 126 (36), 15386–15396. https://doi.org/10.1021/acs.jpcc.2c02489.
  17. Shehab, M. K.; Weeraratne, K. S.; Huang, T.; Lao, K. U.; El-Kaderi, H. M. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13 (13), 15083–15091. https://doi.org/10.1021/acsami.0c20915.
  18. Spera, D.; Pate, D.; Spence, G. C.; Villot, C.; Onukwughara, C. J.; White, D.; Lao, K. U.; Özgür, Ü.; Arachchige, I. U. Colloidal Synthesis of Homogeneous Ge 1– xy Si y Sn x Nanoalloys with Composition-Tunable Visible to Near-IR Optical Properties. Chem. Mater. 2023, 35 (21), 9007–9018. https://doi.org/10.1021/acs.chemmater.3c01644.
  19. Word, M. D.; López Peña, H. A.; Ampadu Boateng, D.; McPherson, S. L.; Gutsev, G. L.; Gutsev, L. G.; Lao, K. U.; Tibbetts, K. M. Ultrafast Dynamics of Nitro–Nitrite Rearrangement and Dissociation in Nitromethane Cation. J. Phys. Chem. A 2022, 126 (6), 879–888. https://doi.org/10.1021/acs.jpca.1c10288.
  20. Nobel Prize Outreach. The 1998 Nobel Prize in Chemistry. https://www.nobelprize.org/prizes/chemistry/1998/press-release/ (accessed 2024-09-23).
  21. The Nobel Prize in Chemistry 2013. NobelPrize.org. https://www.nobelprize.org/prizes/chemistry/2013/press-release/ (accessed 2024-09-23).

AXE Research SeminarSeptember 20, 2024 ▼

From Antihistamine to Anti-Infective: Loratadine Combats Methicillin-Resistant Staphylococcus aureus by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes

- Professor Heather B. MillerOctober 11, 2024 ▼

  1. Cutrona, N.; Gillard, K.; Ulrich, R.; Seemann, M.; Miller, H. B.; Blackledge, M. S. From Antihistamine to Anti-Infective: Loratadine Inhibition of Regulatory PASTA Kinases in Staphylococci Reduces Biofilm Formation and Potentiates β-Lactam Antibiotics and Vancomycin in Resistant Strains of Staphylococcus Aureus. ACS Infect. Dis. 2019, 5 (8), 1397–1410. https://doi.org/10.1021/acsinfecdis.9b00096. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2232099104.
  2. Viering, B. L.; Balogh, H.; Cox, C. F.; Kirpekar, O. K.; Akers, A. L.; Federico, V. A.; Valenzano, G. Z.; Stempel, R.; Pickett, H. L.; Lundin, P. M.; Blackledge, M. S.; Miller, H. B. Loratadine Combats Methicillin-Resistant Staphylococcus Aureus by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes. ACS Infect. Dis. 2024, 10 (1), 232–250. https://doi.org/10.1021/acsinfecdis.3c00616. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10788911.

The Effect of Bicyclic Chalcogen-Phosphorus Rings on the Bergman Cyclization

- Marcos Hendler (student speaker)October 18, 2024 ▼

Optimizing the catalytic efficiency of cerium(IV) in cyclic di-GMP hydrolysis with ligands

- Raechel Parent (student speaker)October 18, 2024 ▼

25 Years Underground. Selected Chemical Adventures From My Time At Duke

- Dr. David GoodenNovember 1, 2024 ▼

  1. Carlson, D. L.; Kowalewski, M.; Bodoor, K.; Lietzan, A. D.; Hughes, P. F.; Gooden, D.; Loiselle, D. R.; Alcorta, D.; Dingman, Z.; Mueller, E. A.; Irnov, I.; Modla, S.; Chaya, T.; Caplan, J.; Embers, M.; Miller, J. C.; Jacobs-Wagner, C.; Redinbo, M. R.; Spector, N.; Haystead, T. A. J. Targeting Borrelia Burgdorferi HtpG with a Berserker Molecule, a Strategy for Anti-Microbial Development. Cell Chemical Biology 2024, 31 (3), 465-476.e12. https://doi.org/10.1016/j.chembiol.2023.10.004. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_chembiol_2023_10_004.
  2. Zhao, J.; Cochrane, C. S.; Najeeb, J.; Gooden, D.; Sciandra, C.; Fan, P.; Lemaitre, N.; Newns, K.; Nicholas, R. A.; Guan, Z.; Thaden, J. T.; Fowler, V. G.; Spasojevic, I.; Sebbane, F.; Toone, E. J.; Duncan, C.; Gammans, R.; Zhou, P. Preclinical Safety and Efficacy Characterization of an LpxC Inhibitor against Gram-Negative Pathogens. Sci. Transl. Med. 2023, 15 (708), eadf5668. https://doi.org/10.1126/scitranslmed.adf5668.

  1. Gooden, D. M.; Schmidt, D. M. Z.; Pollock, J. A.; Kabadi, A. M.; McCafferty, D. G. Facile Synthesis of Substituted Trans-2-Arylcyclopropylamine Inhibitors of the Human Histone Demethylase LSD1 and Monoamine Oxidases A and B. Bioorganic & Medicinal Chemistry Letters 2008, 18 (10), 3047–3051. https://doi.org/10.1016/j.bmcl.2008.01.003.
  2. Christensen, T.; Gooden, D. M.; Kung, J. E.; Toone, E. J. Additivity and the Physical Basis of Multivalency Effects:  A Thermodynamic Investigation of the Calcium EDTA Interaction. J. Am. Chem. Soc. 2003, 125 (24), 7357–7366. https://doi.org/10.1021/ja021240c.
  3. Gooden, D. M.; Chakrapani, H.; Toone, E. J. C-Nitroso Compounds: Synthesis, Physicochemical Properties and Biological Activities. Current Topics in Medicinal Chemistry 2005, 5 (7), 687–705. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68480304
  4. Gooden, D. Facility Overview. Duke Small Molecule Synthesis Facility. https://sites.duke.edu/smsf/facility-overview/ (accessed 2024-11-07).
  5. Gooden, D. M. Synthesis and Physical Organic Chemistry of C-Nitroso Compounds: A Study of C-Nitroso Ketones as Selective Nitrosonium Donors. Ph.D., Duke University, United States -- North Carolina, 2006. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_305327542 (accessed 2024-11-07).

Dr. Michelle BrannNovember 7, 2024 ▼

  1. Brann, M. R.; Hansknecht, S. P.; Muir, M.; Sibener, S. J. Acetone–Water Interactions in Crystalline and Amorphous Ice Environments. J. Phys. Chem. A 2022, 126 (17), 2729–2738. https://doi.org/10.1021/acs.jpca.2c01437.
  2. Brann, M. Condensed Phase Adsorption and Reactivity: Extraterrestrial Ices, Isotopic Enrichment, Olefin Oxidation, and Nerve Agent Simulants. Ph.D., The University of Chicago, United States -- Illinois, 2022. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2718700836 (accessed 2024-11-11).
  3. Brann, M. R.; Ma, X.; Sibener, S. J. Isotopic Enrichment Resulting from Differential Condensation of Methane Isotopologues Involving Non-Equilibrium Gas–Surface Collisions Modeled with Molecular Dynamics Simulations. J. Phys. Chem. C 2023, 127 (27), 13286–13294. https://doi.org/10.1021/acs.jpcc.3c02386.
  4. Balucani, N.; Bertin, M.; Brann, M.; Brown, W. A.; Ceccarelli, C.; Martín-Doménech, R.; Fulker, J.; Garrod, R. T.; Green, J.; Gudipati, M. S.; Heard, D. E.; Herbst, E.; Jacovella, U.; Kamp, I.; McCoustra, M. R. S.; Sameera, W. M. C.; Sims, I.; Sturm, A.; Viti, S.; Weaver, S. W.; Wiesenfeld, L.; Wilkins, O. H. Laboratory Astrochemistry of and on Dust and Ices: General Discussion. Faraday Discuss. 2023, 245 (0), 519–540. https://doi.org/10.1039/D3FD90026F.
  5. Williams, D. A.; Cecchi-Pestellini, C. Astrochemistry: Chemistry in Interstellar and Circumstellar Space; Royal Society of Chemistry: Cambridge, UK, 2023. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928397010806241
  6. Balucani, N.; Brann, M.; Brünken, S.; Ceccarelli, C.; Cordiner, M.; Crump, E. M.; Douglas, K. M.; Fleisher, A. J.; Flint, A.; Fulker, J.; Garrod, R. T.; Gudipati, M. S.; Gupta, D.; Halpern, J.; Heard, D. E.; Herbst, E.; Hockey, E. K.; Huang, K.-Y.; Jacovella, U.; Kamp, I.; Lemmens, A. K.; Madhusudhan, N.; McCoustra, M. R. S.; McGuire, B.; Meijer, A.; Puzzarini, C.; Rap, D. B.; Sims, I. R.; Stockett, M. H.; Sturm, A.; Suits, A. G.; Dishoeck, E. F. van; Viti, S.; Walker, N.; Weaver, S. W.; Wiesenfeld, L.; Wilkins, O. H. Laboratory Astrochemistry of the Gas Phase: General Discussion. Faraday Discuss. 2023, 245 (0), 391–445. https://doi.org/10.1039/D3FD90025H.

Dr. Jason CalvinNovember 12, 2024 ▼

  1. Barmparis, G. D.; Lodziana, Z.; Lopez, N.; Remediakis, I. N. Nanoparticle Shapes by Using Wulff Constructions and First-Principles Calculations. Beilstein J. Nanotechnol. 2015, 6 (1), 361–368. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_516da62f43d44ffdad247ea1fd462a87.
  2. Brewer, A. S.; Calvin, J. J.; Alivisatos, A. P. Impact of Uniform Facets on the Thermodynamics of Ligand Exchanges on Colloidal Quantum Dots. J. Phys. Chem. C 2023, 127 (21), 10270–10281. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1021_acs_jpcc_3c00187.
  3. Calvin, J. J. Organic Ligands and Colloidal Nanocrystal Surface Thermodynamics. Ph.D., University of California, Berkeley, California, USA, 2022. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_3111066737.
  4. Calvin, J. J.; Brewer, A. S.; Crook, M. F.; Kaufman, T. M.; Alivisatos, A. P. Observation of Negative Surface and Interface Energies of Quantum Dots. Proceedings of the National Academy of Sciences 2024, 121 (18). https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1073_pnas_2307633121.
  5. Calvin, J. J.; Kaufman, T. M.; Sedlak, A. B.; Crook, M. F.; Alivisatos, A. P. Observation of Ordered Organic Capping Ligands on Semiconducting Quantum Dots via Powder X-Ray Diffraction. Nat Commun 2021, 12 (1), 2663. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6a70a0dab9604fc9b2b18bc6c4f012be.
  6. Calvin, J. J.; O’Brien, E. A.; Sedlak, A. B.; Balan, A. D.; Alivisatos, A. P. Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. ACS Nano 2021, 15 (1), 1407–1420. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2475528117.
  7. Calvin, J. J.; Sedlak, A. B.; Brewer, A. S.; Kaufman, T. M.; Alivisatos, A. P. Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots. ACS Nano 2024, 18 (36), 25257–25270. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_3097492829.
  8. Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P. Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. J. Am. Chem. Soc. 2020, 142 (44), 18897–18906. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2454124135.
  9. Geyer, S. M.; Scherer, J. M.; Jaworski, F. B.; Bawendi, M. G. Multispectral Imaging via Luminescent Down-Shifting with Colloidal Quantum Dots. Opt. Mater. Express, OME 2013, 3 (8), 1167–1175. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1364_ome_3_001167.
  10. Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem. Rev. 2021, 121 (5), 3186–3233. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2473752687.
  11. Levchenko, A. A.; Li, G.; Boerio-Goates, J.; Woodfield, B. F.; Navrotsky, A. TiO2 Stability Landscape:  Polymorphism, Surface Energy, and Bound Water Energetics. Chem. Mater. 2006, 18 (26), 6324–6332. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_istex_primary_ark_67375_TPS_XMNMF8GK_4.
  12. Nanoparticle Technology Handbook, 3rd edition.; Makio Naito, Toyokazu Yokoyama, Kouhei Hosokawa, Kiyoshi Nogi, Eds.; Elsevier: Amsterdam, 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928388335006241
  13. O’Brien, E. A. Driving Forces and Effects of Ligand Exchange in Nanocrystalline Systems. Ph.D., University of California, Berkeley, United States -- California, 2018. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2507722249 (accessed 2024-11-18).
  14. Oh, M. H.; Cho, M. G.; Chung, D. Y.; Park, I.; Kwon, Y. P.; Ophus, C.; Kim, D.; Kim, M. G.; Jeong, B.; Gu, X. W.; Jo, J.; Yoo, J. M.; Hong, J.; McMains, S.; Kang, K.; Sung, Y.; Alivisatos, A. P.; Hyeon, T. Design and Synthesis of Multigrain Nanocrystals via Geometric Misfit Strain. Nature 2020, 577 (7790), 359-363,363A. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_s41586_019_1899_3.
  15. Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals. J. Phys. Chem. B 2004, 108 (49), 18826–18831. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1021_jp046481g.
  16. Utzat, H.; Sun, W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V.; Bawendi, M. G. Coherent Single-Photon Emission from Colloidal Lead Halide Perovskite Quantum Dots. Science 2019, 363 (6431), 1068–1072. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1126_science_aau7392.
  17. Werz, T.; Baumann, M.; Wolfram, U.; Krill, C. E. Particle Tracking during Ostwald Ripening Using Time-Resolved Laboratory X-Ray Microtomography. Materials Characterization 2014, 90, 185–195. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_22340354.
  18. Xu, F.; Zhou, W.; Navrotsky, A. Cadmium Selenide: Surface and Nanoparticle Energetics. Journal of Materials Research 2011, 26 (5), 720–725. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1671563007.
  19. Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L.-W. Hydroxylation of the Surface of PbS Nanocrystals Passivated with Oleic Acid. Science 2014, 344 (6190), 1380–1384. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_jndl_porta_oai_ndlsearch_ndl_go_jp_R100000136_I1363107369952846336.
  20. Zrazhevskiy, P.; Sena, M.; Gao, X. Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. Chem. Soc. Rev. 2010, 39 (11), 4326–4354. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3212036.

Dr. J.J. JiangNovember 14, 2024 ▼

  1. Borsovszky, J.; Nauta, K.; Jiang, J.; Hansen, C. S.; McKemmish, L. K.; Field, R. W.; Stanton, J. F.; Kable, S. H.; Schmidt, T. W. Photodissociation of Dicarbon: How Nature Breaks an Unusual Multiple Bond. Proceedings of the National Academy of Sciences 2021, 118 (52), e2113315118. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719853.
  2. Jiang, J. Diabatic Valence-Hole Concept. J. Phys. Chem. A 2024, 128 (17), 3253–3265. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_2427464.
  3. Jiang, J.; McCartt, A. D. Two-Color, Intracavity Pump–Probe, Cavity Ringdown Spectroscopy. The Journal of Chemical Physics 2021, 155 (10), 104201. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_2570212368.
  4. Jiang, J.; McCartt, A. D. Mid-Infrared Trace Detection with Parts-per-Quadrillion Quantitation Accuracy: Expanding Frontiers of Radiocarbon Sensing. Proceedings of the National Academy of Sciences 2024, 121 (15), e2314441121. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_2326247.
  5. Jiang, J.; Ye, H.-Z.; Nauta, K.; Van Voorhis, T.; Schmidt, T. W.; Field, R. W. Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again.” J. Phys. Chem. A 2022, 126 (20), 3090–3100. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1877979.
  6. McCartt, A. D.; Jiang, J. Room-Temperature Optical Detection of 14CO2 below the Natural Abundance with Two-Color Cavity Ring-Down Spectroscopy. ACS Sens. 2022, 7 (11), 3258–3264. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_2263528.

Dr. Collin SteenNovember 19, 2024 ▼

  1. Demmig-Adams, B.; Stewart, J. J.; López-Pozo, M.; Polutchko, S. K.; Adams, W. W. Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules 2020, 25 (24), 5825. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_6225cf259267455e8a29c52095f2a388.
  2. Erickson, E.; Wakao, S.; Niyogi, K. K. Light Stress and Photoprotection in Chlamydomonas Reinhardtii. The Plant Journal 2015, 82 (3), 449–465. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1400706.
  3. Głowacka, K.; Kromdijk, J.; Kucera, K.; Xie, J.; Cavanagh, A. P.; Leonelli, L.; Leakey, A. D. B.; Ort, D. R.; Niyogi, K. K.; Long, S. P. Photosystem II Subunit S Overexpression Increases the Efficiency of Water Use in a Field-Grown Crop. Nat Commun 2018, 9 (1), 868. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_abfd5de63c3e4800a4a2059d0f38c8c9.
  4. Hubbart, S.; Smillie, I. R. A.; Heatley, M.; Swarup, R.; Foo, C. C.; Zhao, L.; Murchie, E. H. Enhanced Thylakoid Photoprotection Can Increase Yield and Canopy Radiation Use Efficiency in Rice. Commun Biol 2018, 1 (1), 1–12. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6123638.
  5. Kromdijk, J.; Głowacka, K.; Leonelli, L.; Gabilly, S. T.; Iwai, M.; Niyogi, K. K.; Long, S. P. Improving Photosynthesis and Crop Productivity by Accelerating Recovery from Photoprotection. Science 2016, 354 (6314), 857–861. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1832459.
  6. Litvín, R.; Bína, D.; Herbstová, M.; Gardian, Z. Architecture of the Light-Harvesting Apparatus of the Eustigmatophyte Alga Nannochloropsis Oceanica. Photosynth Res 2016, 130 (1), 137–150. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1837325827.
  7. Mennicke, U.; Salditt, T. Preparation of Solid-Supported Lipid Bilayers by Spin-Coating. Langmuir 2002, 18 (21), 8172–8177. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1021_la025863f.
  8. Müller, P.; Li, X.-P.; Niyogi, K. K. Non-Photochemical Quenching. A Response to Excess Light Energy1. Plant Physiology 2001, 125 (4), 1558–1566. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1539381.
  9. Park, S.; Steen, C. J.; Fischer, A. L.; Fleming, G. R. Snapshot Transient Absorption Spectroscopy: Toward in Vivo Investigations of Nonphotochemical Quenching Mechanisms. Photosynth Res 2019, 141 (3), 367–376. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1656532.
  10. Park, S.; Steen, C. J.; Lyska, D.; Fischer, A. L.; Endelman, B.; Iwai, M.; Niyogi, K. K.; Fleming, G. R. Chlorophyll–Carotenoid Excitation Energy Transfer and Charge Transfer in Nannochloropsis Oceanica for the Regulation of Photosynthesis. Proceedings of the National Academy of Sciences 2019, 116 (9), 3385–3390. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6397512.
  11. Ruban, A. V. Crops on the Fast Track for Light. Nature 2017, 541 (7635), 36–37. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_journals_1856850697.
  12. Short, A. H.; Fay, T. P.; Crisanto, T.; Hall, J.; Steen, C. J.; Niyogi, K. K.; Limmer, D. T.; Fleming, G. R. Xanthophyll-Cycle Based Model of the Rapid Photoprotection of Nannochloropsis in Response to Regular and Irregular Light/Dark Sequences. The Journal of Chemical Physics 2022, 156 (20), 205102. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_scitation_primary_10_1063_5_0089335.
  13. Steen, C. J.; Burlacot, A.; Short, A. H.; Niyogi, K. K.; Fleming, G. R. Interplay between LHCSR Proteins and State Transitions Governs the NPQ Response in Chlamydomonas during Light Fluctuations. Plant, Cell & Environment 2022, 45 (8), 2428–2445. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1873421.
  14. Steen, C. J.; Morris, J. M.; Short, A. H.; Niyogi, K. K.; Fleming, G. R. Complex Roles of PsbS and Xanthophylls in the Regulation of Nonphotochemical Quenching in Arabidopsis Thaliana under Fluctuating Light. J. Phys. Chem. B 2020, 124 (46), 10311–10325. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2459355954.

Chemistry Seminar Presentations Archives

Over the following tabs, you will find the Chemistry Seminar listings from previous semesters. 

Sodium ion batteries rising as a key energy storage technology
- Prof. Feng Lin

Characterization of Streptomyces Natural Products in New Zealand
- Pro. Jonathan Dattelbaum

Non-electrophilic activators of NRF2, a transcription factor involved in the oxidative stress response
- Prof. Terry Moore

Developing a Predictive Model for the Asymmetric Hydrogenation of Ketones
- Evelyn Ramirez (Student Speaker)

Investigation of CO2 Reduction Mechanism with Isopropyl Amine and Other Amine Species
- Charli Chen (Student Speaker)

Synthesis and Photophysics of First-Row Transition Metal Oxide Semiconductor Nanomaterials
Prof. Kathryn Knowles

Organic Chemistry in Space: Formation Mechanisms and Stepwise Solvation of Astrochemical Relevant Ions in the Gas Phase
- Prof. Samy El-Shall

Halogen-Bonding Capable Gold Nanoparticles — Synthesis, Modification and Application in Molecular Detection
- Karthik Lalwani (student speaker)

578 Variations on the Bergman Cyclization
- Sebastian Mendoza-Gomez (student speaker)

Asymmetric Synthesis of (+)-Collybolide and Reevaluation of Kappa-Opioid Receptor Agonism
- Dr. Sophie Shevick

Increasing global access to the high-volume HIV drug nevirapine through process intensification
- Felix Minami (student speaker)

Neat, Simple, and Wrong: Just-So Stories Regarding Non-Bonded Interactions
- Dr. John Herbert

Generating chiral light from molecules spanning almost the whole periodic table
- Dr. Gaël Ung

  1. Adewuyi, J. A.; Schley, N. D.; Ung, G. Vanol-Supported Lanthanide Complexes for Strong Circularly Polarized Luminescence at 1550 Nm. Chemistry – A European Journal 2023, 29 (36), e202300800. https://doi.org/10.1002/chem.202300800.
  2. Arrico, L.; Di Bari, L.; Zinna, F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry – A European Journal 2021, 27 (9), 2920–2934. https://doi.org/10.1002/chem.202002791.
  3. Bailey, J.; Chrysostomou, A.; Hough, J. H.; Gledhill, T. M.; McCall, A.; Clark, S.; Ménard, F.; Tamura, M. Circular Polarization in Star- Formation Regions: Implications for Biomolecular Homochirality. Science 1998, 281 (5377), 672–674. https://doi.org/10.1126/science.281.5377.672.
  4. Chiou, T.-H.; Kleinlogel, S.; Cronin, T.; Caldwell, R.; Loeffler, B.; Siddiqi, A.; Goldizen, A.; Marshall, J. Circular Polarization Vision in a Stomatopod Crustacean. Current Biology 2008, 18 (6), 429–434. https://doi.org/10.1016/j.cub.2008.02.066.
  5. Deng, M.; Schley, N. D.; Ung, G. High Circularly Polarized Luminescence Brightness from Analogues of Shibasaki’s Lanthanide Complexes. Chem. Commun. 2020, 56 (94), 14813–14816. https://doi.org/10.1039/D0CC06568D.
  6. Gagnon, Y. L.; Templin, R. M.; How, M. J.; Marshall, N. J. Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Current Biology 2015, 25 (23), 3074–3078. https://doi.org/10.1016/j.cub.2015.10.047.
  7. Near-Infrared (NIR) Luminescence from Lanthanide(III) Complexes. In Rare earth coordination chemistry: fundamentals and applications; Huang, C.-H., Ed.; John Wiley& Sons: Singapore ; Hoboken, NJ, 2010.
  8. Kleinlogel, S.; White, A. G. The Secret World of Shrimps: Polarisation Vision at Its Best. PLoS One 2008, 3 (5), e2190. https://doi.org/10.1371/journal.pone.0002190.
  9. Kwon, J.; Nakagawa, T.; Tamura, M.; Hough, J. H.; Kandori, R.; Choi, M.; Kang, M.; Cho, J.; Nakajima, Y.; Nagata, T. Near-Infrared Polarimetry of the Outflow Source AFGL 6366S: Detection of Circular Polarization. AJ 2018, 156 (1), 1. https://doi.org/10.3847/1538-3881/aac389.
  10. Mukthar, N. F. M.; Schley, N. D.; Ung, G. Strong Circularly Polarized Luminescence at 1550 Nm from Enantiopure Molecular Erbium Complexes. J. Am. Chem. Soc. 2022, 144 (14), 6148–6153. https://doi.org/10.1021/jacs.2c01134.
  11. Schnable, D.; Ung, G. Augmentation of NIR Circularly Polarized Luminescence Activity in Shibasaki-Type Lanthanide Complexes Supported by the Spirane Sphenol, 2024. https://ung.chem.uconn.edu/pubs/.
  12. Sharma, V.; Crne, M.; Park, J. O.; Srinivasarao, M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science 2009, 325 (5939), 449–451. https://doi.org/10.1126/science.1172051.
  13. Willis, B.-A. N.; Schnable, D.; Schley, N. D.; Ung, G. Spinolate Lanthanide Complexes for High Circularly Polarized Luminescence Metrics in the Visible and Near-Infrared. J. Am. Chem. Soc. 2022, 144 (49), 22421–22425. https://doi.org/10.1021/jacs.2c10364.
  14. Wynberg, H.; Meijer, E. W.; Hummelen, J. C.; Dekkers, H. P. J. M.; Schippers, P. H.; Carlson, A. D. Circular Polarization Observed in Bioluminescence. Nature 1980, 286 (5773), 641–642. https://doi.org/10.1038/286641a0.
  15. Ung Research Group. University of Connecticut. https://ung.chem.uconn.edu/.

Rhodium-Catalyzed C–H Activation for the Synthesis, Elaboration, and Application of N-Heterocyclic Compounds
- Dr. Danielle Confair

  1. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C−H Activation. J. Am. Chem. Soc. 2008, 130 (11), 3645–3651. https://doi.org/10.1021/ja7104784.
  2. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation. Chem. Rev. 2010, 110 (2), 624–655. https://doi.org/10.1021/cr900005n.
  3. Confair, D. N.; Greenwood, N. S.; Mercado, B. Q.; Ellman, J. A. Rh(III)-Catalyzed Imidoyl C–H Carbamylation and Cyclization to Bicyclic [1,3,5]Triazinones. Org. Lett. 2020, 22 (22), 8993–8997. https://doi.org/10.1021/acs.orglett.0c03393.
  4. Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc. 2010, 132 (13), 4971–4971. https://doi.org/10.1021/ja101189c.
  5. Downey, C. W.; Confair, D. N.; Liu, Y.; Heafner, E. D. One-Pot Enol Silane Formation–Alkylation of Ketones with Propargyl Carboxylates Promoted by Trimethylsilyl Trifluoromethanesulfonate. J. Org. Chem. 2018, 83 (20), 12931–12938. https://doi.org/10.1021/acs.joc.8b01997.
  6. Downey, C. W.; Maxwell, E. N.; Confair, D. N. Silyl Triflate-Accelerated Additions of Catalytically Generated Zinc Acetylides to N-Phenyl Nitrones. Tetrahedron Letters 2014, 55 (35), 4959–4961. https://doi.org/10.1016/j.tetlet.2014.07.015.
  7. Duttwyler, S.; Chen, S.; Takase, M. K.; Wiberg, K. B.; Bergman, R. G.; Ellman, J. A. Proton Donor Acidity Controls Selectivity in Nonaromatic Nitrogen Heterocycle Synthesis. Science 2013, 339 (6120), 678–682.
  8. Duttwyler, S.; Lu, C.; Rheingold, A. L.; Bergman, R. G.; Ellman, J. A. Highly Diastereoselective Synthesis of Tetrahydropyridines by a C–H Activation–Cyclization–Reduction Cascade. J. Am. Chem. Soc. 2012, 134 (9), 4064–4067. https://doi.org/10.1021/ja2119833.
  9. Fukui, M.; Rodriguiz, R. M.; Zhou, J.; Jiang, S. X.; Phillips, L. E.; Caron, M. G.; Wetsel, W. C. Vmat2 Heterozygous Mutant Mice Display a Depressive-Like Phenotype. J. Neurosci. 2007, 27 (39), 10520–10529. https://doi.org/10.1523/JNEUROSCI.4388-06.2007.
  10. Ghosh, E.; Kumari, P.; Jaiman, D.; Shukla, A. K. Methodological Advances: The Unsung Heroes of the GPCR Structural Revolution. Nat Rev Mol Cell Biol 2015, 16 (2), 69–81. https://doi.org/10.1038/nrm3933.
  11. Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schiöth, H. B.; Gloriam, D. E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat Rev Drug Discov 2017, 16 (12), 829–842. https://doi.org/10.1038/nrd.2017.178.
  12. Kaplan, A. L.; Confair, D. N.; Kim, K.; Barros-álvarez, X.; Rodriguiz, R. M.; Yang, Y.; Kweon, O. S.; Che, T.; McCorvy, J. D.; Kamber, D. N.; Phelan, J. P.; Martins, L. C.; Pogorelov, V. M.; Diberto, J. F.; Slocum, S. T.; Huang, X.-P.; Kumar, J. M.; Robertson, M. J.; Panova, O.; Seven, A. B.; Wetsel, A. Q.; Wetsel, W. C.; Irwin, J. J.; Skiniotis, G.; Shoichet, B. K.; Roth, B. L.; Ellman, J. A. Bespoke Library Docking for 5-HT2A Receptor Agonists with Antidepressant Activity. Nature 2022, 610 (7932), 582-3,591A-591W. https://doi.org/10.1038/s41586-022-05258-z.
  13. Kooistra, A. J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G. M.; Gloriam, D. E. GPCRdb in 2021: Integrating GPCR Sequence, Structure and Function. Nucleic Acids Research 2021, 49 (D1), D335–D343. https://doi.org/10.1093/nar/gkaa1080.
  14. Nutt, D.; Erritzoe, D.; Carhart-Harris, R. Psychedelic Psychiatry’s Brave New World. Cell 2020, 181 (1), 24–28. https://doi.org/10.1016/j.cell.2020.03.020.
  15. Rodriguiz, R. M.; Nadkarni, V.; Means, C. R.; Pogorelov, V. M.; Chiu, Y.-T.; Roth, B. L.; Wetsel, W. C. LSD-Stimulated Behaviors in Mice Require β-Arrestin 2 but Not β-Arrestin 1. Sci Rep 2021, 11 (1), 17690. https://doi.org/10.1038/s41598-021-96736-3.
  16. Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.; Schafer, L. L.; Musaev, D. G.; Wencel-Delord, J.; Roberts, C. A.; Sarpong, R.; Wilson, Z. E.; Brimble, M. A.; Johansson, M. J.; Ackermann, L. C–H Activation. Nat Rev Methods Primers 2021, 1 (1), 1–31. https://doi.org/10.1038/s43586-021-00041-2.
  17. Roth, B. L. Irving Page Lecture: 5-HT2A Serotonin Receptor Biology: Interacting Proteins, Kinases and Paradoxical Regulation. Neuropharmacology 2011, 61 (3), 348–354. https://doi.org/10.1016/j.neuropharm.2011.01.012.
  18. Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C–H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47 (17), 6603–6743. https://doi.org/10.1039/C8CS00201K.
  19. Tran, G.; Confair, D.; Hesp, K. D.; Mascitti, V.; Ellman, J. A. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C–H Activation. J. Org. Chem. 2017, 82 (17), 9243–9252. https://doi.org/10.1021/acs.joc.7b01723.
  20. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57 (24), 10257–10274. https://doi.org/10.1021/jm501100b.
  21. Yang, B. V.; O’Rourke, D.; Li, J. Mild and Selective Debenzylation of Tertiary Amines Using α-Chloroethyl Chloroformate. Synlett 1993, 1993 (3), 195–196. https://doi.org/10.1055/s-1993-22398.
  22. Ellman Laboratory. Yale University. https://ellman.chem.yale.edu/.
  23. Downey Group. University of Richmond. https://blog.richmond.edu/downey/.

The Global Energy Challenge: Food and Fuel from Air, Water and Sunlight
- Dr. Daniel Nocera

  1. Alfaraidi, A. M.; Kudisch, B.; Ni, N.; Thomas, J.; George, T. Y.; Rajabimoghadam, K.; Jiang, H. J.; Nocera, D. G.; Aziz, M. J.; Liu, R. Y. Reversible CO2 Capture and On-Demand Release by an Acidity-Matched Organic Photoswitch. J. Am. Chem. Soc. 2023, 145 (49), 26720–26727. https://doi.org/10.1021/jacs.3c08471.
  2. Campbell, B. M.; Gordon, J. B.; Raguram, E. R.; Gonzalez, M. I.; Reynolds, K. G.; Nava, M.; Nocera, D. G. Electrophotocatalytic Perfluoroalkylation by LMCT Excitation of Ag(II) Perfluoroalkyl Carboxylates. Science 2024, 383 (6680), 279–284. https://doi.org/10.1126/science.adk4919.
  3. Johnston, B.; Loh, D. M.; Nocera, D. G. Substrate-Mediator Duality of 1,4-Dicyanobenzene in Electrochemical C(Sp2)−C(Sp3) Bond Formation with Alkyl Bromides. Angewandte Chemie International Edition 2023, 62 (49), e202312128. https://doi.org/10.1002/anie.202312128.
  4. Keane, T. P.; Veroneau, S. S.; Hartnett, A. C.; Nocera, D. G. Generation of Pure Oxygen from Briny Water by Binary Catalysis. J. Am. Chem. Soc. 2023, 145 (9), 4989–4993. https://doi.org/10.1021/jacs.3c00176.
  5. Lemon, C. M.; Powers, D. C.; Huynh, M.; Maher, A. G.; Phillips, A. A.; Tripet, B. P.; Nocera, D. G. Ag(III)···Ag(III) Argentophilic Interaction in a Cofacial Corrole Dyad. Inorg. Chem. 2023, 62 (1), 3–17. https://doi.org/10.1021/acs.inorgchem.2c02285.
  6. Sun, R.; Ruccolo, S.; Nascimento, D. L.; Qin, Y.; Hibbert, N.; Nocera, D. G. Chemoselective Bond Activation by Unidirectional and Asynchronous PCET Using Ketone Photoredox Catalysts. Chem. Sci. 2023, 14 (47), 13776–13782. https://doi.org/10.1039/D3SC04362B.
  7. Veroneau, S. S.; Thorarinsdottir, A. E.; Loh, D. M.; Hartnett, A. C.; Keane, T. P.; Nocera, D. G. Electrolyte-Induced Restructuring of Acid-Stable Oxygen Evolution Catalysts. Chem. Mater. 2023, 35 (8), 3218–3225. https://doi.org/10.1021/acs.chemmater.3c00032.
  8. Yan, Z.; Reynolds, K. G.; Sun, R.; Shin, Y.; Thorarinsdottir, A. E.; Gonzalez, M. I.; Kudisch, B.; Galli, G.; Nocera, D. G. Oxidation Chemistry of Bicarbonate and Peroxybicarbonate: Implications for Carbonate Management in Energy Storage. J. Am. Chem. Soc. 2023, 145 (40), 22213–22221. https://doi.org/10.1021/jacs.3c08144.
  9. Zhu, Q.; Costentin, C.; Stubbe, J.; Nocera, D. G. Disulfide Radical Anion as a Super-Reductant in Biology and Photoredox Chemistry. Chem. Sci. 2023, 14 (25), 6876–6881. https://doi.org/10.1039/D3SC01867A.

Quantifying and Partitioning Substituent Effects using Sigma Hole Potentials
- Nam Pham (student speaker)

Effects of polymer solution entanglement on the mechanics of electrospun polycaprolactone fibers
- Manasa Rajeev (student speaker)

New Synthetic Methods for Deoxygenative Diversification for Carboxylic Acids
- Byoungmoo Kim

  1. Bower, S.; Kreutzer, K. A.; Buchwald, S. L. A Mild General Procedure for the One-Pot Conversion of Amides to Aldehydes. Angewandte Chemie International Edition in English 1996, 35 (13–14), 1515–1516. https://doi.org/10.1002/anie.199615151.
  2. Chandrika, N. T.; Garneau-Tsodikova, S. Comprehensive Review of Chemical Strategies for the Preparation of New Aminoglycosides and Their Biological Activities. Chem. Soc. Rev. 2018, 47 (4), 1189–1249. https://doi.org/10.1039/C7CS00407A.
  3. Feng, M.; Zhang, H.; Maulide, N. Challenges and Breakthroughs in Selective Amide Activation. Angewandte Chemie International Edition 2022, 61 (49), e202212213. https://doi.org/10.1002/anie.202212213.
  4. Hartwig, J. F. Catalyst-Controlled Site-Selective Bond Activation. Acc. Chem. Res. 2017, 50 (3), 549–555. https://doi.org/10.1021/acs.accounts.6b00546.
  5. Huang, Z.; Dong, G. Site-Selectivity Control in Organic Reactions: A Quest To Differentiate Reactivity among the Same Kind of Functional Groups. Acc. Chem. Res. 2017, 50 (3), 465–471. https://doi.org/10.1021/acs.accounts.6b00476.
  6. Katsuki, T.; Sharpless, K. B. The First Practical Method for Asymmetric Epoxidation. J. Am. Chem. Soc. 1980, 102 (18), 5974–5976. https://doi.org/10.1021/ja00538a077.
  7. Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. Ti-Catalyzed Enantioselective Addition of Cyanide to Imines. A Practical Synthesis of Optically Pure α-Amino Acids. J. Am. Chem. Soc. 1999, 121 (17), 4284–4285. https://doi.org/10.1021/ja9840605.
  8. Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63 (21), 12290–12358. https://doi.org/10.1021/acs.jmedchem.0c00530.
  9. Le, D. N.; Hansen, E.; Khan, H. A.; Kim, B.; Wiest, O.; Dong, V. M. Hydrogenation Catalyst Generates Cyclic Peptide Stereocentres in Sequence. Nature Chem 2018, 10 (9), 968–973. https://doi.org/10.1038/s41557-018-0089-5.
  10. Liu, Y.; Kim, B.; Taylor, S. D. Synthesis of 4-Formyl Estrone Using a Positional Protecting Group and Its Conversion to Other C-4-Substituted Estrogens. J. Org. Chem. 2007, 72 (23), 8824–8830. https://doi.org/10.1021/jo7017075.
  11. Matheau-Raven, D.; Gabriel, P.; Leitch, J. A.; Almehmadi, Y. A.; Yamazaki, K.; Dixon, D. J. Catalytic Reductive Functionalization of Tertiary Amides Using Vaska’s Complex: Synthesis of Complex Tertiary Amine Building Blocks and Natural Products. ACS Catal. 2020, 10 (15), 8880–8897. https://doi.org/10.1021/acscatal.0c02377.
  12. Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
  13. Phan, D. H. T.; Kim, B.; Dong, V. M. Phthalides by Rhodium-Catalyzed Ketone Hydroacylation. J. Am. Chem. Soc. 2009, 131 (43), 15608–15609. https://doi.org/10.1021/ja907711a.
  14. Shugrue, C. R.; Miller, S. J. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chem. Rev. 2017, 117 (18), 11894–11951. https://doi.org/10.1021/acs.chemrev.7b00022.
  15. Toste, F. D.; Sigman, M. S.; Miller, S. J. Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Acc. Chem. Res. 2017, 50 (3), 609–615. https://doi.org/10.1021/acs.accounts.6b00613.
  16. Trillo, P.; Adolfsson, H. Direct Catalytic Reductive N-Alkylation of Amines with Carboxylic Acids: Chemoselective Enamine Formation and Further Functionalizations. ACS Catal. 2019, 9 (8), 7588–7595. https://doi.org/10.1021/acscatal.9b01974.
  17. The Kim Group | Synthetic Organic Chemistry and Catalysis. Clemson University. https://scienceweb.clemson.edu/kimgroup/.

One-pot enol silane formation — allylation of ketones promoted by trimethylsilyl trifluoromethanesulfonate
- Alexa Connors (student speaker)

The Effect of Solvent Identity and Hydride-Donor on the Reduction of CO2 into Useful Fuels
- Abigail McEntire (student speaker)

  1. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822–4827. https://doi.org/10.1021/acscatal.7b00687.
  2. Gao, F.-Y.; Bao, R.-C.; Gao, M.-R.; Yu, S.-H. Electrochemical CO2-to-CO Conversion: Electrocatalysts, Electrolytes, and Electrolyzers. J. Mater. Chem. A 2020, 8 (31), 15458–15478. https://doi.org/10.1039/D0TA03525D.
  3. Graham, D. SOP4CV - Standard Operating Procedures for Cyclic Voltammetry; 2017. https://sop4cv.com/
  4. Karak, P.; Mandal, S. K.; Choudhury, J. Bis-Imidazolium-Embedded Heterohelicene: A Regenerable NADP+ Cofactor Analogue for Electrocatalytic CO2 Reduction. J. Am. Chem. Soc. 2023, 145 (13), 7230–7241. https://doi.org/10.1021/jacs.2c12883.
  5. Min, X.; Kanan, M. W. Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway. J. Am. Chem. Soc. 2015, 137 (14), 4701–4708. https://doi.org/10.1021/ja511890h.
  6. Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5 (8), 4586–4591. https://doi.org/10.1021/acscatal.5b00922.
  7. Torbensen, K.; Joulié, D.; Ren, S.; Wang, M.; Salvatore, D.; Berlinguette, C. P.; Robert, M. Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction. ACS Energy Lett. 2020, 5 (5), 1512–1518. https://doi.org/10.1021/acsenergylett.0c00536.

Identification of Xanthones as Selective Killers of CancerCells Overexpressing the ABC Transporter MRP1
- Kathy Colin (student speaker)

  1. CAS, a division of the American Chemical Society. Glutathione. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=70-18-8&search=glutathione.
  2. CAS, a division of the American Chemical Society. Verapamil. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=52-53-9&search=verapamil.
  3. CAS, a division of the American Chemical Society. Xanthone. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=90-47-1&search=xanthone.
  4. EUPATI. Pharmacokinetics; n.d. https://toolbox.eupati.eu/glossary/pharmacokinetics/.
  5. Thurm, C.; Schraven, B.; Kahlfuss, S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. IJMS 2021, 22 (17), 9186. https://doi.org/10.3390/ijms22179186.
  6. World Health Organization. Global Tuberculosis Report 2014; World Health Organization: Geneva, 2014. https://iris.who.int/handle/10665/137094.
  7. Zhou, S. F. Role of Multidrug Resistance Associated Proteins in Drug Development. Drug Discov Ther 2008, 2 (6), 305–332.
  8. Pollock Research Lab. University of Richmond. https://blog.richmond.edu/pollocklab/.
  9. Student Programs. AbbVie. https://www.abbvie.com/join-us/opportunities/student-programs.html.
  10. Undergraduate Research in Chemical Biology. Vanderbilt College of Arts and Science. https://www.vanderbilt.edu/reu/index.php.

Exploration of Pynaphthyridine and Binaphthyridine Manganese(I) Tricarbonyl Complexes: Influence on Carbon Dioxide Reduction Electrocatalysis
- Luke Simkins (student speaker)

  1. Cohen, K.; Simonyan, H.; Ortiz, M.; Solomon, B.; Simkins, L.; Dominey, R.; Goldman, E.; Bocarsly, A. Exploration of Pynaphthyridine and Binaphthyridine Manganese(I) Tricarbonyl Complexes: Influence on Carbon Dioxide Reduction Electrocatalysis. 
    • submitted to Organometallics

  1. Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; Stocker, T. F. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453 (7193), 379–382. https://doi.org/10.1038/nature06949.
  2. MacFarling Meure, C.; Etheridge, D.; Trudinger, C.; Steele, P.; Langenfelds, R.; van Ommen, T.; Smith, A.; Elkins, J. Law Dome CO2, CH4 and N2O Ice Core Records Extended to 2000 Years BP. Geophysical Research Letters 2006, 33 (14). https://doi.org/10.1029/2006GL026152.
  3. Neftel, A.; Moor, E.; Oeschger, H.; Stauffer, B. Evidence from Polar Ice Cores for the Increase in Atmospheric CO2 in the Past Two Centuries. Nature 1985, 315 (6014), 45–47. https://doi.org/10.1038/315045a0.
  4. Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V. Y.; Lorius, C.; PÉpin, L.; Ritz, C.; Saltzman, E.; Stievenard, M. Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature 1999, 399 (6735), 429–436. https://doi.org/10.1038/20859.
  5. Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Battle, M. O.; Langenfelds, R. L.; Steele, L. P.; Curran, M.; Bender, M.; White, J. W. C.; Jenk, T. M.; Blunier, T.; Francey, R. J. A Revised 1000 Year Atmospheric δ13C-CO2 Record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres 2013, 118 (15), 8482–8499. https://doi.org/10.1002/jgrd.50668.
  6. Siegenthaler, U.; Stocker, T. F.; Monnin, E.; Lüthi, D.; Schwander, J.; Stauffer, B.; Raynaud, D.; Barnola, J.-M.; Fischer, H.; Masson-Delmotte, V.; Jouzel, J. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science 2005, 310 (5752), 1313–1317. https://doi.org/10.1126/science.1120130.
  7. Home | Scripps CO2 Program. https://scrippsco2.ucsd.edu/.

The Continuous Flow Synthesis of Polyfunctionalized Pyrroles
- Kingsley Dwomoh (student speaker)

  1. CAS, a division of the American Chemical Society. (Chloromethylene)dimethylammonium chloride. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=3724-43-4.
  2. Giles, P. R.; Marson, C. M. Dimethylchloromethyleneammonium Chloride. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd, 2001. https://doi.org/10.1002/047084289X.rd319m.

Comparison of properties of isomeric pyrrolyl phosphine ligands
- Vicky Osenga (student speaker)

Altering Product Selectivity for Ru-based CO2 Reduction Catalysts
- Ben Dwyer (student speaker)

One-pot synthesis of 4-isoxazolines from chalcones promoted by trimethylsilyl trifluoromethanesulfonate
- Greg Hughes (student speaker)

Substitution of sulfur-containing compounds
- Abigail Dalton (student speaker)