Skip to Main Content

Boatwright Memorial Library

Spring 2025 BMB Presentations

These presentations come from the BMB Seminar Series. 

Under each presentation:

 you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for BMB Seminar Presentations

*Zotero Folder reflects updates quickest*

When Senses Start to Fade: Understanding Schizophrenia in the Blind and Deaf-Blind Communities

- Beza MulatuJanuary 21, 2025 ▼

  1. Dammeyer, J. Deafblindness: A Review of the Literature. Scand J Public Health 2014, 42 (7), 554–562. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1691296596.
  2. McIsaac, M. A.; Reaume, M.; Phillips, S. P.; Michaelson, V.; Steeves, V.; Davison, C. M.; Vafaei, A.; King, N.; Pickett, W. A Novel Application of a Data Mining Technique to Study Intersections in the Social Determinants of Mental Health among Young Canadians. SSM - Population Health 2021, 16, 100946. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_72506c6390f3483aba51ce95c8a25fd8.
  3. Vargas, S. M.; Huey, S. J. Jr.; Miranda, J. A Critical Review of Current Evidence on Multiple Types of Discrimination and Mental Health. American Journal of Orthopsychiatry 2020, 90 (3), 374–390. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2348808108.
  4. Virginia Board for People with Disabilities. Assessment of Virginia’s Disability Services System: Geographic Disparities in Healthcare Access, 2024. https://rga.lis.virginia.gov/Published/2024/RD215.
  5. National Federation of the Blind of Virginia. https://nfbv.org/.
  6. Newman Civic Fellows: Beza Mulatu. Campus Compact. https://compact.org/current-programs/newman-civic-fellowship/newman-civic-fellows/beza .

Prostate Lineage-Specific Metabolism: A Key Driver of Cancer Progression

- Peterson HaasJanuary 21, 2025 ▼

  1. Giafaglione, J. M.; Crowell, P. D.; Delcourt, A. M. L.; Hashimoto, T.; Ha, S. M.; Atmakuri, A.; Nunley, N. M.; Dang, R. M. A.; Tian, M.; Diaz, J. A.; Tika, E.; Payne, M. C.; Burkhart, D. L.; Li, D.; Navone, N. M.; Corey, E.; Nelson, P. S.; Lin, N. Y. C.; Blanpain, C.; Ellis, L.; Boutros, P. C.; Goldstein, A. S. Prostate Lineage-Specific Metabolism Governs Luminal Differentiation and Response to Antiandrogen Treatment. Nat Cell Biol 2023, 25 (12), 1821–1832. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10709144.

Progress Toward the Synthesis of Dibenzaphosphocine Derivatives

- Will FineganJanuary 28, 2025 ▼

  1. Verkade, J. G.; Kisanga, P. B. Proazaphosphatranes: A Synthesis Methodology Trip from Their Discovery to Vitamin A. Tetrahedron 2003, 59 (40), 7819–7858. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_S0040_4020_03_01204_3.
  2. You, J.; Verkade, J. G. A General Method for the Direct α-Arylation of Nitriles with Aryl Chlorides. Angewandte Chemie International Edition 2003, 42 (41), 5051–5053. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_71339501.

Characterization of Putative Periplasmic Branched Cahin Amino Acid Binding Protein from Thermotoga maritima

- Sky MarsicanoJanuary 28, 2025 ▼

  1. Hassan, S. A.; Gupta, V. Maple Syrup Urine Disease. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2024. http://www.ncbi.nlm.nih.gov/books/NBK557773/.
  2. Joint Center for Structural Genomics. Crystal Structure of a Leucine Binding Protein LivK (TM1135) from Thermotoga Maritima MSB8 at 1.90 A Resolution, 2011. https://www.rcsb.org/structure/3td9.
  3. Kaiser, G. E. Prokaryotic Cell Anatomy: The Cyctoplasmic Membrane. In Biol 230 Microbiology Lecture E-Text; 2021. https://cwoer.ccbcmd.edu/science/microbiology/lecture/unit1/prostruct/cm.html.
  4. Stetter, K. O.; Rachel, R. Thermotoga Maritima Ultrathin Section; n.d. http://rcn.montana.edu/Images/View.aspx?id=37322.

Analyzing Signal Reception of Agrobacterium Using VirA Mutations

- Ziang FanFebruary 4, 2025 ▼

  1. Joubert, P.; Beaupère, D.; Lelièvre, P.; Wadouachi, A.; Sangwan, R. S.; Sangwan-Norreel, B. S. Effects of Phenolic Compounds on Agrobacterium Vir Genes and Gene Transfer Induction—a Plausible Molecular Mechanism of Phenol Binding Protein Activation. Plant Science 2002, 162 (5), 733–743. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_18890038.
  2. McCullen, C. A.; Binns, A. N. Agrobacterium Tumefaciens and Plant Cell Interactions and Activities Required for Interkingdom Macromolecular Transfer. Annual Review of Cell and Developmental Biology 2006, 22 (Volume 22, 2006), 101–127. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68934773.

Genome sequencing to understand H. pylori

- Danna AguilarFebruary 4, 2025 ▼

  1. Basu, A.; Chatterjee, A.; Kottalil, D. Helicobacter Pylori: Revisiting the Role of Host Genetics in Susceptibility to Infectious Diseases. Journal of Computational intelligence and Bioinformatics (JCIB) 2010, 3 (1), 1–9. https://www.researchgate.net/publication/206760986_Helicobacter_pylori_revisiting_the_role_of_host_genetics_in_susceptibility_to_infectious_diseases.
  2. Breurec, S.; Guillard, B.; Hem, S.; Brisse, S.; Dieye, F. B.; Huerre, M.; Oung, C.; Raymond, J.; Tan, T. S.; Thiberge, J.-M.; Vong, S.; Monchy, D.; Linz, B. Evolutionary History of Helicobacter Pylori Sequences Reflect Past Human Migrations in Southeast Asia. PLOS ONE 2011, 6 (7), e22058. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_plos_journals_1306137051.
  3. Connor, B. CDC Yellow Book 2024: Helicobacter pylori. Centers for Disease Control and Prevention. https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/helicobacter-pylori (accessed 2025-02-17).
  4. Fluorescent In Situ Hybridization (FISH) Assay; 2018. https://www.youtube.com/watch?v=b81DcJC1jAs (accessed 2025-02-18).
  5. Falush, D.; Wirth, T.; Linz, B.; Pritchard, J. K.; Stephens, M.; Kidd, M.; Blaser, M. J.; Graham, D. Y.; Vacher, S.; Perez-Perez, G. I.; Yamaoka, Y.; Mégraud, F.; Otto, K.; Reichard, U.; Katzowitsch, E.; Wang, X.; Achtman, M.; Suerbaum, S. Traces of Human Migrations in Helicobacter Pylori Populations. Science 2003, 299 (5612), 1582–1585. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_743533978.
  6. Fischer, W.; Tegtmeyer, N.; Stingl, K.; Backert, S. Four Chromosomal Type IV Secretion Systems in Helicobacter Pylori: Composition, Structure and Function. Front. Microbiol. 2020, 11. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_ad9ad1a9670f4897ae10ddd8f6342c27.
  7. OSweetNature. Helicobacter Pylori Cell Structures and Anatomy. https://www.dreamstime.com/basic-rgb-image186817330.
  8. Penta, R.; De Falco, M.; Iaquinto, G.; De Luca, A. Helicobacter Pylori and Gastric Epithelial Cells: From Gastritis to Cancer. J Exp Clin Cancer Res 2005, 24 (3), 337–345. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_68767218.
  9. Rose, M. Books: Beyond Clovis. Archaeology. December 1999. https://archive.archaeology.org/9911/etc/books.html.
  10. Thorell, K.; Muñoz-Ramírez, Z. Y.; Wang, D.; Sandoval-Motta, S.; Boscolo Agostini, R.; Ghirotto, S.; Torres, R. C.; Falush, D.; Camargo, M. C.; Rabkin, C. S. The Helicobacter Pylori Genome Project: Insights into H. Pylori Population Structure from Analysis of a Worldwide Collection of Complete Genomes. Nat Commun 2023, 14 (1), 8184. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_ae6c181692004c09bbdb55bf0bf8559f.
  11. Timonina, I. The Structure of Heicobacter Pylori. https://www.dreamstime.com/stock-illustration-structure-helicobacter-pylori-infographics-vector-illustration-isolated-background-image74057637.
  12. Vazirzadeh, J.; Karbasizadeh, V.; Falahi, J.; Moghim, S.; Narimani, T.; Rafiei, R. Genetic Diversity of Helicobacter Pylori Isolates from Patients with Gastric Diseases in Isfahan. Advanced Biomedical Research 2022, 11 (1), 4. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_51b03c039a284a7380d1c36ef20fe0de.
  13. Helicobacter Pylori. Exeter Gut Clinic. https://www.exetergutclinic.co.uk/conditions/helicobacter-pylori/ (accessed 2025-02-17).
  14. Welcome. The University of Auckland. https://www.auckland.ac.nz/en.html (accessed 2025-02-17).
  15. Chapter 2 - Evolution of Life Through Time. In Introduction to Oceanography; MiraCosta College, 2021. https://gotbooks.miracosta.edu/oceans/chapter2.html.
  16. RoC Review of Helicobacter pylori (H. pylori): Chronic Infection. National Toxicology Program. https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/completed/hpylori (accessed 2025-02-17).

Investigating Phage-Antibiotic Synergy to Combat the Rise of Antibiotic Resistance

- Emma Lee KaneFebruary 18, 2025 ▼

  • Coming Soon

The Role of Intracellular pH (pHi) in Zebrafish Tail Regeneration

- Anush MargaryanFebruary 18, 2025 ▼

  1. Baldini, P. M.; De Vito, P.; Martino, A.; Fraziano, M.; Grimaldi, C.; Luly, P.; Zalfa, F.; Colizzi, V. Differential Sensitivity of Human Monocytes and Macrophages to ANP: A Role of Intracellular pH on Reactive Oxygen Species Production through the Phospholipase Involvement. Journal of Leukocyte Biology 2003, 73 (4), 502–510. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_webofscience_primary_000187391700010CitationCount.
  2. Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and Regulators of Intracellular pH. Nat Rev Mol Cell Biol 2010, 11 (1), 50–61. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1038_nrm2820.
  3. Denker, S. P.; Barber, D. L. Cell Migration Requires Both Ion Translocation and Cytoskeletal Anchoring by the Na-H Exchanger NHE1. Journal of Cell Biology 2002, 159 (6), 1087–1096. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_72798363.
  4. Gan, X. T.; Chakrabarti, S.; Karmazyn, M. Modulation of Na+/H+exchange Isoform 1 mRNA Expression in Isolated Rat Hearts. American Journal of Physiology-Heart and Circulatory Physiology 1999, 277 (3), H993–H998. https://doi.org/10.1152/ajpheart.1999.277.3.H993.
  5. Liu, Y.; Reyes, E.; Castillo-Azofeifa, D.; Klein, O. D.; Nystul, T.; Barber, D. L. Intracellular pH Dynamics Regulates Intestinal Stem Cell Lineage Specification. Nat Commun 2023, 14 (1), 3745. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2829424854.
  6. Niethammer, P.; Grabher, C.; Look, A. T.; Mitchison, T. J. A Tissue-Scale Gradient of Hydrogen Peroxide Mediates Rapid Wound Detection in Zebrafish. Nature 2009, 459 (7249), 996–999. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_20941780.
  7. Romero, M. M. G.; McCathie, G.; Jankun, P.; Roehl, H. H. Damage-Induced Reactive Oxygen Species Enable Zebrafish Tail Regeneration by Repositioning of Hedgehog Expressing Cells. Nat Commun 2018, 9 (1), 4010. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1038_s41467_018_06460_2.
  8. Scott, C. A.; Carney, T. J.; Amaya, E. Aerobic Glycolysis Is Important for Zebrafish Larval Wound Closure and Tail Regeneration. Wound Repair and Regeneration 2022, 30 (6), 665–680. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_webofscience_primary_000863844200001.
  9. Sinclair, J. W.; Hoying, D. R.; Bresciani, E.; Nogare, D. D.; Needle, C. D.; Berger, A.; Wu, W.; Bishop, K.; Elkahloun, A. G.; Chitnis, A.; Liu, P.; Burgess, S. M. The Warburg Effect Is Necessary to Promote Glycosylation in the Blastema during Zebrafish Tail Regeneration. npj Regen Med 2021, 6 (1), 1–16. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_springer_journals_10_1038_s41536_021_00163_x.
  10. Sipka, T.; Peroceschi, R.; Hassan-Abdi, R.; Groß, M.; Ellett, F.; Begon-Pescia, C.; Gonzalez, C.; Lutfalla, G.; Nguyen-Chi, M. Damage-Induced Calcium Signaling and Reactive Oxygen Species Mediate Macrophage Activation in Zebrafish. Front. Immunol. 2021, 12. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_webofscience_primary_000637969800001CitationCount.
  11. Ulmschneider, B.; Grillo-Hill, B. K.; Benitez, M.; Azimova, D. R.; Barber, D. L.; Nystul, T. G. Increased Intracellular pH Is Necessary for Adult Epithelial and Embryonic Stem Cell Differentiation. Journal of Cell Biology 2016, 215 (3), 345–355. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1837285625.
  12. Diane Barber Laboratory. University of California San Franscisco. https://dbarberlab.ucsf.edu/ (accessed 2025-02-18).

Photoactivated Chemotherapy

- Auden WilsonFebruary 18, 2025 ▼

  • Coming Soon

Preparation of 2-(phosphino)pyrroles

- Torsten BoroswskiFebruary 25, 2025 ▼

  • Coming Soon

Investigating the Agrobacterium tumefaciens VirA Linker Region for Phenol Interaction

- Olivia DayFebruary 25, 2025 ▼

  • Coming Soon

Organic synthesis

- Lily KaufmanFebruary 25, 2025 ▼

  • Coming Soon

Enabling SNP Detection via Isothermal Amplification Coupled with CRISPR Cas12a

- Madeleine RostadMarch 4, 2025 ▼

  • Coming Soon

Investigating epilepsy in zebrafish

- Moriam AnimashaunMarch 4, 2025 ▼

  • Coming Soon

Quantum Mechanics and/or Molecular Dynamics

- Maaz RaoMarch 18, 2025 ▼

  • Coming Soon

Studying if methylation of RNA Helicase, DED-1, affects stress granule formation

- Alex DaganMarch 18, 2025 ▼

  • Coming Soon

TBA

- Paige EmbleyMarch 25, 2025 ▼

  • Coming Soon

Effects of Biomass smoke on epithelial lung cells

- Martina YounanMarch 25, 2025 ▼

  • Coming Soon

TBA

- Kenza HanoudaApril 8, 2025 ▼

  • Coming Soon

Synthesis of a Ruthenium Complex capable of CO2 Reduction

- Jimmy ChengApril 8, 2025 ▼

  • Coming Soon

Investigating the role of Sigma and the 5HT2B receptor in Dravet Fish

- Luis MontanoApril 15, 2025 ▼

  • Coming Soon

Investigation of Pyrrole Synthesis Under Zav'yalov Conditions

- Anna ShklyarevskyApril 15, 2025 ▼

  • Coming Soon

BMB Seminar Presentations Archives

Over the following tabs, you will find the BMB Seminar listings from previous semesters. 

Copper-Catalyzed Synthesis of S-S Bond-Containing Silanols from SCBs and Trisulfide-1,1-dioxides : Article Unpacking
- Sopheak Pa

Dative Bonding.........
- Aamy Bakry

Out of respect for the publication process, this section is intentionally left blank.

Friedel-Crafts Alkylation of Indoles and Benzofurans with Secondary Acelates and Tertiary Alcohols
- Helen Xia

Investigation of Plasmodium Hsp90 as a target for antimalarials
- Elizabeth Taggart

Structural phylogenetics of A family DNA polymerases
- Yagmur Bingul

Diaryl Oxazoles: Oxidatively Cleavable Linkers for Small Molecule Drug Discovery Platforms
- Evan Wolff

Ruthenium Polypyridyl Complexes Investigated as Potential Photoactivated Chemotherapy Agents
- Yuna Chung

Exploration of Heterocycles as Peptide-Based Cleavable Linkers
- John Blobe

CD46 Isoforms & Ad.64 Viral Binding
Corina Stasiak

Halogen-Bonding Capable Functionalized Gold Naoparticle Molecular Detection Schemes
- Mackey Sherard

Cdx1a: An Underdog Story
- Jackie Bisso

Synthesis, Characterization, and Catalytic Analysis of Copper(I) Proazaphosphatrene Complexes
- Billy Apostolou

Oxazoles: Oxidatively Cleavable Linkers for Peptide Discovery Platforms
- Pamira Yanar (student speaker)

  1. Beck, H.; Härter, M.; Haß, B.; Schmeck, C.; Baerfacker, L. Small Molecules and Their Impact in Drug Discovery: A Perspective on the Occasion of the 125th Anniversary of the Bayer Chemical Research Laboratory. Drug Discovery Today 2022, 27 (6), 1560–1574. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_drudis_2022_02_015. https://doi.org/10.1016/j.drudis.2022.02.015.
  2. Denton, E. What is solid phase peptide synthesis? https://www.biotage.com/blog/what-is-solid-phase-peptide-synthesis (accessed 2024-02-06).
  3. DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. Journal of Health Economics 2016, 47, 20–33. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_6272db6adc3d064064123401da5e71a0. https://doi.org/10.1016/j.jhealeco.2016.01.012.
  4. Center for Drug Evaluation and Research. Standard Costs (in Thousands of Dollars) for Components of the Process for the Review of Human Drug Applications. FDA 2019https://www.fda.gov/industry/prescription-drug-user-fee-amendments/standard-costs-thousands-dollars-components-process-review-human-drug-applications.
  5. Rössler, S. L.; Grob, N. M.; Buchwald, S. L.; Pentelute, B. L. Abiotic Peptides as Carriers of Information for the Encoding of Small-Molecule Library Synthesis. Science 2023, 379 (6635), 939–945. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2783498263. https://doi.org/10.1126/science.adf1354.
  6. Sarkar, M.; Pascal, B. D.; Steckler, C.; Aquino, C.; Micalizio, G. C.; Kodadek, T.; Chalmers, M. J. Decoding Split and Pool Combinatorial Libraries with Electron-Transfer Dissociation Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24 (7), 1026–1036. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455952. https://doi.org/10.1007/s13361-013-0633-x.
  7. Shugrue Lab. University of Richmond. https://blog.richmond.edu/shugruelab/ (accessed 2024-01-23).

Functional Analysis of Retinoic Acis Receptors (RAR) in the Development of Zebrafish Hindbrain and Spinal Chord
- Lauren Knopp (student speaker)

  1. Bradford, Y. ZFIN Database Information. Zebrafish Information Network. https://zfin.atlassian.net/wiki/spaces/general/pages/1891415775/ZFIN+Database+Information (accessed 2024-02-28).
  2. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications; Cartner, S. C., Ed.; American College of Laboratory Animal Medicine; Academic Press: London ; San Diego, CA, 2019. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928388343606241.
  3. CAS, a division of the American Chemical Society. Retinoic acid. https://commonchemistry.cas.org/detail?cas_rn=302-79-4 (accessed 2024-02-28). .
  4. Detrich, H. W.; Westerfield, M.; Zon, L. I. The Zebrafish: Cellular and Developmental Biology, 2nd ed.; Methods in cell biology; Elsevier/Academic Press: Amsterdam Boston, 2004. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928073356106241.
  5. Joshi, P.; Darr, A. J.; Skromne, I. CDX4 Regulates the Progression of Neural Maturation in the Spinal Cord. Developmental Biology 2019, 449 (2), 132–142. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_ydbio_2019_02_014. https://doi.org/10.1016/j.ydbio.2019.02.014.
  6. Moulton, J. D. Using Morpholinos to Control Gene Expression. Curr Protoc Nucleic Acid Chem 2007, Chapter 4 (1), Unit 4.30. https://doi.org/10.1002/0471142700.nc0430s27.
  7. NCBI Taxonomy. Danio rerio. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=7955 (accessed 2024-02-27).
  8. Home | Skromne Lab. http://www.skromnelab.com/ (accessed 2024-02-27).
  9. Hints and tips for bathroom design: Spina Bifida - Closomat. https://www.closomat.co.uk/hints-and-tips-for-bathroom-design-spina-bifida/ (accessed 2024-02-27).

Cerium(IV) Mediated Hydrolysis of Cyclic di-GMP and Enhancing Antibiotic Performance
- Saoirse Landers (student speaker)

  1. Barker, H.; Pohrebniak, O. Stages of Biofilm Formation; 2023. https://www.the-scientist.com/infographic-stages-of-biofilm-formation-71140.
  2. Garner, J. P.; Heppell, P. S. J. Cerium Nitrate in the Management of Burns. Burns 2005, 31 (5), 539–547. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_b2f356b256dec016db94d55bd5c404cb. https://doi.org/10.1016/j.burns.2005.01.014.
  3. Johansson, B.; Luo, W.; Li, S.; Ahuja, R. Cerium; Crystal Structure and Position in The Periodic Table. Sci Rep 2014, 4 (1), 6398. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_srep06398. https://doi.org/10.1038/srep06398.
  4. National Center for Biotechnology Information. PubChem Element Summary for AtomicNumber 58, Cerium. PubChem. https://pubchem.ncbi.nlm.nih.gov/element/Cerium (accessed 2024-02-28).
  5. Ryan, R. P. Cyclic Di-GMP Signalling and the Regulation of Bacterial Virulence. Microbiology (Reading) 2013, 159 (Pt 7), 1286–1297. https://doi.org/10.1099/mic.0.068189-0.

Conformationally Flexible Phosphines: Progress Towards the Synthesis of Dibenzaphosphocine Derivatives
- Morgan Labadini (student speaker)

  1. CAS, a division of the American Chemical Society. 2-Furanmethanamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=617-89-0&search=furfurylamine.
  2. CAS, a division of the American Chemical Society. 2,8,9-Trimethyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=120666-13-9.
  3. CAS, a division of the American Chemical Society. 4-Methoxyaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=104-94-9&search=p-anisidine.
  4. CAS, a division of the American Chemical Society. 4-Methylaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=106-49-0&search=p-toluidine.
  5. CAS, a division of the American Chemical Society. Aniline. https://commonchemistry.cas.org/detail?cas_rn=62-53-3&search=aniline.
  6. CAS, a division of the American Chemical Society. Methylamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=74-89-5.
  7. CAS, a division of the American Chemical Society. Trimethylphosphine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=594-09-2.
  8. 24.2: Ligands. In Map: General Chemistry (Petrucci et al); LibreTexts, 2023. https://chem.libretexts.org/@go/page/24351.

Using Nanomaterials for Optimal Halogen Bonding Interactions Within Sensors for Explosives
- Sophie Reiff (student speaker)

  1. Dang, Q. M.; Gilmore, S. T.; Lalwani, K.; Conk, R. J.; Simpson, J. H.; Leopold, M. C. Monolayer-Protected Gold Nanoparticles Functionalized with Halogen Bonding Capability─An Avenue for Molecular Detection Schemes. Langmuir 2022, 38 (15), 4747–4762. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2648064332. https://doi.org/10.1021/acs.langmuir.2c00381.
  2. Dang, Q. M.; Simpson, J. H.; Parish, C. A.; Leopold, M. C. Evaluating Halogen-Bond Strength as a Function of Molecular Structure Using Nuclear Magnetic Resonance Spectroscopy and Computational Analysis. J. Phys. Chem. A 2021, 125 (42), 9377–9393. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_dee70bc0fa68922232fb10fd44f1e8b3. https://doi.org/10.1021/acs.jpca.1c07554.
  3. Furton, K. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives. Talanta 2001, 54 (3), 487–500. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9b1cac7368080077d19f736d5e078b7e. https://doi.org/10.1016/S0039-9140(00)00546-4.
  4. Jaini, A. K. A.; Hughes, L. B.; Kitimet, M. M.; Ulep, K. J.; Leopold, M. C.; Parish, C. A. Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection. ACS Sens. 2019, 4 (2), 389–397. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1610528. https://doi.org/10.1021/acssensors.8b01246.
  5. Senesac, L.; Thundat, T. G. Nanosensors for Trace Explosive Detection. Materials Today 2008, 11 (3), 28–36. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_s1369_7021_08_70017_8. https://doi.org/10.1016/S1369-7021(08)70017-8.
  6. Sherard, M. M.; Dang, Q. M.; Reiff, S. C.; Simpson, J. H.; Leopold, M. C. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen Bonding. ACS Appl. Nano Mater. 2023, 6 (10), 8367–8381. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1021_acsanm_3c00618. https://doi.org/10.1021/acsanm.3c00618.
  7. Zamborini, F. P.; Leopold, M. C.; Hicks, J. F.; Kulesza, P. J.; Malik, M. A.; Murray, R. W. Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles. J. Am. Chem. Soc. 2002, 124 (30), 8958–8964. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_801577783cc3b78022f5b74747d72ea4. https://doi.org/10.1021/ja025965s.

CMT-Causing Mutations in INF2 Lead to Impaired Organelle Function
- Michelle Perales Panduro (student speaker)

  1. Dojindo Laboratories. Lysosomal Acidic pH Detection Kit-Green/Deep Red L268 Product Manual, 2023. https://www.dojindo.com/manual/L268/ (accessed 2024-03-05).
  2. Edgar, J. R.; Ho, A. K.; Laurá, M.; Horvath, R.; Reilly, M. M.; Luzio, J. P.; Roberts, R. C. A Dysfunctional Endolysosomal Pathway Common to Two Sub-Types of Demyelinating Charcot–Marie–Tooth Disease. acta neuropathol commun 2020, 8 (1), 165. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_275f11a6cd874fd9bce07eb7b28c4413.  https://doi.org/10.1186/s40478-020-01043-z.
  3. Hyttinen, J. M. T.; Niittykoski, M.; Salminen, A.; Kaarniranta, K. Maturation of Autophagosomes and Endosomes: A Key Role for Rab7. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1833 (3), 503–510. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_bbamcr_2012_11_018. https://doi.org/10.1016/j.bbamcr.2012.11.018.
  4. Labat-de-Hoz, L.; Alonso, M. A. The Formin INF2 in Disease: Progress from 10 Years of Research. Cell. Mol. Life Sci. 2020, 77 (22), 4581–4600. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_pmid_8ccae9d10f282078167d565c4aa4f41b. https://doi.org/10.1007/s00018-020-03550-7.
  5. National Library of Medicine. Charcot-Marie-Tooth Disease. MedlinePlus. https://medlineplus.gov/charcotmarietoothdisease.html (accessed 2024-03-04).
  6. Ribosome Studio. Formin assisted actin polymerization in real-time. Facebook. https://www.facebook.com/watch/?v=1140927166307237 (accessed 2024-03-04).
  7. UN San Diego School of Biological Sciences. Welcome to the Manor Lab. Manor Lab. https://manorlab.ucsd.edu/ (accessed 2024-03-05).
  8. Valm, A. M.; Cohen, S.; Legant, W. R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A. R.; Davidson, M. W.; Betzig, E.; Lippincott-Schwartz, J. Applying Systems-Level Spectral Imaging and Analysis to Reveal the Organelle Interactome. Nature 2017, 546 (7656), 162–167. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5536967. https://doi.org/10.1038/nature22369.
  9. Salk Institute for Biological Studies. Salk Institute for Biological Studies. https://www.salk.edu/ (accessed 2024-02-29).
  10. Charcot-Marie-Tooth Disease. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/charcot-marie-tooth-disease (accessed 2024-03-04).

Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase
- Annika Wells (student speaker)

  1. Cavalcante, F. T. T.; De A. Falcão, I. R.; Da S. Souza, J. E.; Rocha, T. G.; De Sousa, I. G.; Cavalcante, A. L. G.; De Oliveira, A. L. B.; De Sousa, M. C. M.; Dos Santos, J. C. S. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021, 2 (1), 149–184.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_e225ab9942eb4d749e8942f2184975fb. https://doi.org/10.3390/electrochem2010012.
  2. Gordon, R. Surprising Things Made From Plastic. Recycle Nation. https://recyclenation.com/2015/12/surprising-things-made-from-plastic/ (accessed 2024-03-05).
  3. Jauffred, L.; Munk Vejborg, R.; Korolev, K. S.; Brown, S.; Oddershede, L. B. Chirality in Microbial Biofilms Is Mediated by Close Interactions between the Cell Surface and the Substratum. The ISME Journal 2017, 11 (7), 1688–1701.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_ismej_2017_19. https://doi.org/10.1038/ismej.2017.19.
  4. Singer, M. Bacterium Ideonella Sakaiensis That Gobbles up Plastic May Be Holy Grail in Pollution Battle. Market Business News. March 13, 2016. https://marketbusinessnews.com/bacterium-ideonella-sakaiensis-gobbles-plastic-may-holy-grail-pollution-battle/128307/ (accessed 2024-03-05).
  5. Zhu, B.; Ye, Q.; Seo, Y.; Wei, N. Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase. Environ. Sci. Technol. Lett. 2022, 9 (7), 650–657.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_425eb2f2ab19c4d0fe3063058d59e2b0. https://doi.org/10.1021/acs.estlett.2c00332.
  6. Piscinibacter sakaiensis Taxonomy ID: 1547922. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1547922 (accessed 2024-03-05).

Characterization of MEMO1 Protein-Protein Ineractions
- Haley Salus (student speaker)

  1. Chakraborty, A. A new molecular target for breast cancer therapy. Sanguine Bio Researcher Blog. https://technical.sanguinebio.com/a-new-molecular-target-for-breast-cancer-therapy/ (accessed 2024-03-05).
  2. Newkirk, M. L.; Rubenstein, K. J.; Kim, J. Y.; Labrecque, C. L.; Airas, J.; Taylor, C. A.; Evans, H. D.; McKoy, Q.; Parish, C. A.; Pollock, J. A. Analysis of MEMO1 Binding Specificity for ErbB2 Using Fluorescence Polarization and Molecular Dynamics Simulations. Biochemistry 2018, 57 (34), 5169–5181.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9f09e1c9f5fface612ebdcaf401d4ec3. https://doi.org/10.1021/acs.biochem.8b00582.
  3. Qiu, C. Crystal Structure of Memo, 2007. https://doi.org/10.2210/pdb3BCZ/pdb.
  4. Qiu, C.; Lienhard, S.; Hynes, N. E.; Badache, A.; Leahy, D. J. Memo Is Homologous to Nonheme Iron Dioxygenases and Binds an ErbB2-Derived Phosphopeptide in Its Vestigial Active Site. Journal of Biological Chemistry 2008, 283 (5), 2734–2740.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1006524. https://doi.org/10.1074/jbc.M703523200.
  5. Schotanus, M. D.; Van Otterloo, E. Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease. Genes 2020, 11 (11), 1316.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_20cb4a3236794f1eab33b59775e58b40. https://doi.org/10.3390/genes11111316.
  6. Affinity Purification. AAT Bioquest. https://www.aatbio.com/catalog/affinity-purification (accessed 2024-03-05).
  7. Cancer Stat Facts: Female Breast Cancer. National Cancer Institute. https://seer.cancer.gov/statfacts/html/breast.html (accessed 2024-03-05).

Assessing Human Influence on Ranavirus Transmission in Vulnerable Native Turtle Species
- Parker Ernst (student speaker)

  1. Allender, M. Ranavirus in Chelonians of North America, 2011. https://www.google.com/url?client=internal-element-cse&cx=013876870482878768093:ampshpmfdtu&q=http://fwf.ag.utk.edu/mgray/ranavirus/2011Symposium/Allender.pdf&sa=U&ved=2ahUKEwjX68z2l-CEAxV5D1kFHTi8CvcQFnoECAAQAg&usg=AOvVaw0aHvqfhhQ22183pQ-YwOKQ (accessed 2024-03-06).
  2. Allender, M. C.; Abd-Eldaim, M.; Schumacher, J.; McRuer, D.; Christian, L. S.; Kennedy, M. PCR Prevalence of Ranavirus in Free-Ranging Eastern Box Turtles (Terrapene Carolina Carolina) at Rehabilitation Centers in Three Southeastern US States. Journal of Wildlife Diseases 2011, 47 (3), 759–764.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_3f2e65c1c6c1c9043e4f74dbd76541f2. https://doi.org/10.7589/0090-3558-47.3.759.
  3. Allender, M. C.; Abd-Eldaim, M.; Kuhns, A.; Kennedy, M. Absence of Ranavirus and Herpesvirus in a Survey of Two Aquatic Turtle Species in Illinois. Journal of Herpetological Medicine and Surgery 2009, 19 (1), 16–20.  https://meridian.allenpress.com/jhms/article/19/1/16/137180/Absence-of-Ranavirus-and-Herpesvirus-in-a-Survey?searchresult=1. https://doi.org/10.5818/1529-9651.19.1.16.
  4. Allender, M. C.; Fry, M. M.; Irizarry, A. R.; Craig, L.; Johnson, A. J.; Jones, M. Intracytoplasmic Inclusions in Circulating Leukocytes from an Eastern Box Turtle (Terrapene Carolina Carolina) with Iridoviral Infection. Journal of Wildlife Diseases 2006, 42 (3), 677–684.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_42_3_677. https://doi.org/10.7589/0090-3558-42.3.677.
  5. Bushnell, R. Incurable Ranavirus Discovered in Ontario Turtles. Ontario Nature. https://ontarionature.org/ranavirus-blog/ (accessed 2024-03-06).
  6. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M. J., Chinchar, V. G., Eds.; Springer International Publishing, 2015.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928189582206241. https://doi.org/10.1007/978-3-319-13755-1.
  7. Johnson, A. J.; Pessier, A. P.; Wellehan, J. F. X.; Childress, A.; Norton, T. M.; Stedman, N. L.; Bloom, D. C.; Belzer, W.; Titus, V. R.; Wagner, R.; Brooks, J. W.; Spratt, J.; Jacobson, E. R. Ranavirus Infection of Free-Ranging and Captive Box Turtles and Tortoises in the United States. Journal of Wildlife Diseases 2008, 44 (4), 851–863.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_44_4_851. https://doi.org/10.7589/0090-3558-44.4.851.
  8. Macdonald, B. Smugglers gamble with turtles’ lives, causing disease outbreak. U.S. Fish & Wildlife Service. https://www.fws.gov/story/smugglers-gamble-turtles-lives-causing-disease-outbreak (accessed 2024-03-06).
  9. Macdonald, B. Smuggling act: A U.S. Fish and Wildlife Service special agent joined an international turtle-trafficking ring in order to take it down. U.S. Fish & Wildlife Service. https://www.fws.gov/story/2021-10/international-turtle-trafficking-ring-busted (accessed 2024-03-06).
  10. Sevin, J.; Wixted, K.; Kisonak, L.; Macdonald, B.; Thompson-Slacum, J.; Buchanan, S.; Karraker, N. Turtles in trouble: Trafficking poses conservation concerns for America’s turtles. U.S. Fish & Wildlife Service. https://www.fws.gov/story/joining-forces-combat-turtle-trafficking (accessed 2024-03-06).
  11. van Dijk, P. P. Terrapene Carolina. The IUCN Red List of Threatened Species 2011, e.T21641A97428179. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T21641A9303747.en.
  12. Ranavirus - American College of Veterinary Pathologists. https://www.acvp.org/page/ranavirus (accessed 2024-03-06).

CD46 is a Receptor for Adenovirus
- Alex Robertson (student speaker)

  1. Burrow, M. K.; Patel, B. C. Keratoconjunctivitis. In StatPearls [Internet]; StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK542279/ .
  2. Ghosh, S. Sialic Acid and Biology of Life: An Introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Academic Press, 2020; pp 1–61. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_ebookcentralchapters_6010006_8_28.
  3. Goodsell, D. PDB101: Molecule of the Month: Adenovirus. PDB-101. http://pdb101.rcsb.org/motm/132 (accessed 2024-03-06).
  4. CD46 CD46 Molecule [Homo Sapiens (Human)]. https://www.ncbi.nlm.nih.gov/gene/4179/ (accessed 2024-03-08).
  5. 9.11H: Double-Stranded DNA Viruses- Adenoviruses. In Microbiology (Boundless); 2017. https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Boundless)/09%3A_Viruses/9.11%3A_DNA_Viruses_in_Eukaryotes/9.11H%3A_Double-Stranded_DNA_Viruses-_Adenoviruses

Insights into the extension past 8-oxo-2'-deoxyguanosine with two Y-family polymerases
- Benny Ko (student speaker)

  1. CAS, a division of the American Chemical Society. 8-Hydroxy-2′-deoxyguanosine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=88847-89-6 (accessed 2024-03-08).
  2. DNA Damage; 2010. https://www.youtube.com/watch?v=uN82GLQYAUQ (accessed 2024-03-08).
  3. Hamm, M. L.; Garcia, A. A.; Gilbert, R.; Johri, M.; Ricart, M.; Sholes, S. L.; Murray-Nerger, L. A.; Wu, E. Y. The Importance of Ile716 toward the Mutagenicity of 8-Oxo-2’-Deoxyguanosine with Bacillus Fragment DNA Polymerase. DNA Repair 2020, 89, 102826. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_4612dc9af8f2a98dd2ad472452a2a0e8. https://doi.org/10.1016/j.dnarep.2020.102826.

Down regulation of oxidative stress regulator in Machado-Joseph Disease
- Midhun Sree Manoj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Yibing Lu (student speaker)

  • Selected Resources Coming Soon

Molecular dynamics of NMDA receptors
- Ismar Alickovic (student speaker)

  • Selected Resources Coming Soon

Genetics of an invasive fruit fly
- Michelle Pogrebetskaya (student speaker)

  • Selected Resources Coming Soon

Interaction between CD46 and adenovirus
- Henry Zhu (student speaker)

  • Selected Resources Coming Soon

Incorporation of an unnatural amino acid in MEMO1
- Sonia Mecoripaj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Jialin Chen(student speaker)

  • Selected Resources Coming Soon

Measurement of electrophysiology and kinetics of ion channels
- Ian Shogren (student speaker)

  • Selected Resources Coming Soon

Development and characterization of carbon nanodots-peptide conjugates for the treatment of bone disease

- Abigail AliOctober 1, 2024 ▼

  1. Bergen, D. J. M.; Kague, E.; Hammond, C. L. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front. Endocrinol. 2019, 10. https://doi.org/10.3389/fendo.2019.00006.
  2. Chau, Q.; Corado-Santiago, L.; Jones, S.; Dattelbaum, J.; Skromne, I. Physicochemical and Inflammatory Analysis of Unconjugated and Conjugated Bone-Binding Carbon Dots. ACS Omega 2024, 9 (1), 1320–1326. https://doi.org/10.1021/acsomega.3c07653.
  3. Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E. M.; Xie, C. Osteoblast-Osteoclast Interactions. Connective Tissue Research 2018, 59 (2), 99–107. https://doi.org/10.1080/03008207.2017.1290085.
  4. DeNichilo, M. O.; Shoubridge, A. J.; Panagopoulos, V.; Liapis, V.; Zysk, A.; Zinonos, I.; Hay, S.; Atkins, G. J.; Findlay, D. M.; Evdokiou, A. Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts. Calcif Tissue Int 2016, 98 (3), 294–305. https://doi.org/10.1007/s00223-015-0090-6.
  5. DuMez, R.; Skromne, I. Testing New Materials to Deliver Medicine to Sick Bones. Front. Young Minds 2023, 11, 906708. https://doi.org/10.3389/frym.2023.906708.
  6. ferociousdigital. Understanding Osteoporosis: Causes, Symptoms, and Risk Factors. Orthopaedic Specialty Group Blog. https://osgpc.com/osteoporosis-causes-symptoms-and-risk-factors-i-osg/ (accessed 2024-10-23).
  7. Panagopoulos, V.; Liapis, V.; Zinonos, I.; Hay, S.; Leach, D. A.; Ingman, W.; DeNichilo, M. O.; Atkins, G. J.; Findlay, D. M.; Zannettino, A. C. W.; Evdokiou, A. Peroxidase Enzymes Inhibit Osteoclast Differentiation and Bone Resorption. Molecular and Cellular Endocrinology 2017, 440, 8–15. https://doi.org/10.1016/j.mce.2016.11.007.
  8. Rajpurohit, S. K.; Ouellette, L.; Sura, S.; Appiah, C.; O’Keefe, A.; McCarthy, K.; Kandepu, U.; Ye Mon, M.; Kimmerling, K.; Arora, V.; Lokeshwar, B. L. Development of a Transparent Transgenic Zebrafish Cellular Phenotype Tg(6xNF-kB:EGFP); Casper(Roy−/−, Nacre−/−) to Study NF-kB Activity. Biomedicines 2023, 11 (7), 1985. https://doi.org/10.3390/biomedicines11071985.
  9. Tu, K. N.; Lie, J. D.; Wan, C. K. V.; Cameron, M.; Austel, A. G.; Nguyen, J. K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. P T 2018, 43 (2), 92–104.
  10. International Osteoporosis Foundation | IOF. https://www.osteoporosis.foundation/ (accessed 2024-10-23).

OdGTP Insertion

- Yeseul JunOctober 1, 2024 ▼

Isolation and identification of compounds with antibiotic activity against ESKAPE pathogen relatives

- Hannah LwinOctober 8, 2024 ▼

Use of a Thermal Shift Assay to Identify Small Molecule Modulators of Staphylococcus aureus STK1

- Camryn SungOctober 8, 2024 ▼

Characterization of a putative periplasmic branched chain amino acid binding protein from Thermotoga maritima (TM1135)

- Esther KimOctober 22, 2024 ▼

  1. Hassan, S. A.; Gupta, V. Maple Syrup Urine Disease. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2024. http://www.ncbi.nlm.nih.gov/books/NBK557773/.
  2. Thermotoga Maritima MSB8, Complete Sequence, 2024. http://www.ncbi.nlm.nih.gov/nuccore/NC_000853.1 (accessed 2024-10-28).

Fouling-Resistant Electrochemical Xylazine Sensors for Indirect Indication of Fentanyl and its Derivatives

- Holly WempleOctober 22, 2024 ▼

Investigations into the mutagenic potential of 8-oxo-2'-deoxyguanosine with human polymerase iota (hPol iota)

- Will QuackenbushOctober 29, 2024 ▼

One-pot enol silane formation-alkylation reactions of ketones and (diaryl)methyl acetates

- Katie MarchioneOctober 29, 2024 ▼

Role of GLP-1 on Immune Cells Response in Neurodegenerative Diseases

- Melody McAteeNovember 5, 2024 ▼

  1. Athauda, D.; Maclagan, K.; Skene, S. S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; Li, Y.; Aviles-Olmos, I.; Warner, T. T.; Limousin, P.; Lees, A. J.; Greig, N. H.; Tebbs, S.; Foltynie, T. Exenatide Once Weekly versus Placebo in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet 2017, 390 (10103), 1664–1675. https://doi.org/10.1016/S0140-6736(17)31585-4.
  2. Balestri, W.; Sharma, R.; da Silva, V. A.; Bobotis, B. C.; Curle, A. J.; Kothakota, V.; Kalantarnia, F.; Hangad, M. V.; Hoorfar, M.; Jones, J. L.; Tremblay, M.-È.; El-Jawhari, J. J.; Willerth, S. M.; Reinwald, Y. Modeling the Neuroimmune System in Alzheimer’s and Parkinson’s Diseases. Journal of Neuroinflammation 2024, 21 (1), 32. https://doi.org/10.1186/s12974-024-03024-8.
  3. Jorfi, M.; Park, J.; Hall, C. K.; Lin, C.-C. J.; Chen, M.; von Maydell, D.; Kruskop, J. M.; Kang, B.; Choi, Y.; Prokopenko, D.; Irimia, D.; Kim, D. Y.; Tanzi, R. E. Infiltrating CD8+ T Cells Exacerbate Alzheimer’s Disease Pathology in a 3D Human Neuroimmune Axis Model. Nat Neurosci 2023, 26 (9), 1489–1504. https://doi.org/10.1038/s41593-023-01415-3.
  4. Underwood, C. R.; Garibay, P.; Knudsen, L. B.; Hastrup, S.; Peters, G. H.; Rudolph, R.; Reedtz-Runge, S. Crystal Structure of Glucagon-like Peptide-1 in Complex with the Extracellular Domain of the Glucagon-like Peptide-1 Receptor*. Journal of Biological Chemistry 2010, 285 (1), 723–730. https://doi.org/10.1074/jbc.M109.033829.
  5. Jorfi Lab. Massachusetts General Hospital. https://www.massgeneral.org/neurology/research/genetics-aging-research-unit/jorfi-lab (accessed 2024-11-05).

Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model

- Dušan VukčevićNovember 5, 2024 ▼

Microbiology and the characteristics of Staph. Equorum

- Teagan HolmesDecember 3, 2024 ▼

  1. Jeong, D.-W.; Han, S.; Lee, J.-H. Safety and Technological Characterization of Staphylococcus Equorum Isolates from Jeotgal, a Korean High-Salt-Fermented Seafood, for Starter Development. International Journal of Food Microbiology 2014, 188, 108–115. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_1762354869.
  2. Place, R. B.; Hiestand, D.; Gallmann, H. R.; Teuber, M. Staphylococcus Equorum Subsp. Linens, Subsp. Nov., A Starter Culture Component for Surface Ripened Semi-Hard Cheeses. Systematic and Applied Microbiology 2003, 26 (1), 30–37. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_18798115.
  3. Taponen, S.; Pyörälä, S. Coagulase-Negative Staphylococci as Cause of Bovine Mastitis—Not so Different from Staphylococcus Aureus? Veterinary Microbiology 2009, 134 (1), 29–36. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_66842951.
  4. Zhang, P.; Liu, Z. Structural Insights into the Transporting and Catalyzing Mechanism of DltB in LTA D-Alanylation. Nat Commun 2024, 15 (1), 3404. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_535e0a1c83874db0860868310abb9fa3.
  5. Jasper Hill Farm. Jasper Hill Farm. https://www.jasperhillfarm.com (accessed 2024-12-03).
  6. Taxonomy browser (Staphylococcus equorum). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=246432 (accessed 2024-12-03).

Antimicrobial work with biofilms

- Abby BangsDecember 3, 2024 ▼

  1. Taxonomy browser (Pseudomonas aeruginosa). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=287 (accessed 2024-12-04).
  2. Taxonomy browser (Pseudomonas putida). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=303 (accessed 2024-12-04).