Skip to Main Content

Boatwright Memorial Library

Science Seminars Guide

Many of the Science Departments have a related Seminar course with multiple presentations throughout the semester. This guide serves as a launching point for students to dig deeper into the resources related to some of those presentations.

Spring 2024 BMB Presentations

These presentations come from the BMB Seminar Series. 

Under each presentation:

 you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for BMB Seminar Presentations

*Zotero Folder reflects updates quickest*

Oxazoles: Oxidatively Cleavable Linkers for Peptide Discovery Platforms
- Pamira Yanar (student speaker)

  1. Beck, H.; Härter, M.; Haß, B.; Schmeck, C.; Baerfacker, L. Small Molecules and Their Impact in Drug Discovery: A Perspective on the Occasion of the 125th Anniversary of the Bayer Chemical Research Laboratory. Drug Discovery Today 2022, 27 (6), 1560–1574. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_drudis_2022_02_015. https://doi.org/10.1016/j.drudis.2022.02.015.
  2. Denton, E. What is solid phase peptide synthesis? https://www.biotage.com/blog/what-is-solid-phase-peptide-synthesis (accessed 2024-02-06).
  3. DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. Journal of Health Economics 2016, 47, 20–33. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_6272db6adc3d064064123401da5e71a0. https://doi.org/10.1016/j.jhealeco.2016.01.012.
  4. Center for Drug Evaluation and Research. Standard Costs (in Thousands of Dollars) for Components of the Process for the Review of Human Drug Applications. FDA 2019https://www.fda.gov/industry/prescription-drug-user-fee-amendments/standard-costs-thousands-dollars-components-process-review-human-drug-applications.
  5. Rössler, S. L.; Grob, N. M.; Buchwald, S. L.; Pentelute, B. L. Abiotic Peptides as Carriers of Information for the Encoding of Small-Molecule Library Synthesis. Science 2023, 379 (6635), 939–945. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2783498263. https://doi.org/10.1126/science.adf1354.
  6. Sarkar, M.; Pascal, B. D.; Steckler, C.; Aquino, C.; Micalizio, G. C.; Kodadek, T.; Chalmers, M. J. Decoding Split and Pool Combinatorial Libraries with Electron-Transfer Dissociation Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24 (7), 1026–1036. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455952. https://doi.org/10.1007/s13361-013-0633-x.
  7. Shugrue Lab. University of Richmond. https://blog.richmond.edu/shugruelab/ (accessed 2024-01-23).

Functional Analysis of Retinoic Acis Receptors (RAR) in the Development of Zebrafish Hindbrain and Spinal Chord
- Lauren Knopp (student speaker)

  1. Bradford, Y. ZFIN Database Information. Zebrafish Information Network. https://zfin.atlassian.net/wiki/spaces/general/pages/1891415775/ZFIN+Database+Information (accessed 2024-02-28).
  2. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications; Cartner, S. C., Ed.; American College of Laboratory Animal Medicine; Academic Press: London ; San Diego, CA, 2019. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928388343606241.
  3. CAS, a division of the American Chemical Society. Retinoic acid. https://commonchemistry.cas.org/detail?cas_rn=302-79-4 (accessed 2024-02-28). .
  4. Detrich, H. W.; Westerfield, M.; Zon, L. I. The Zebrafish: Cellular and Developmental Biology, 2nd ed.; Methods in cell biology; Elsevier/Academic Press: Amsterdam Boston, 2004. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928073356106241.
  5. Joshi, P.; Darr, A. J.; Skromne, I. CDX4 Regulates the Progression of Neural Maturation in the Spinal Cord. Developmental Biology 2019, 449 (2), 132–142. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_ydbio_2019_02_014. https://doi.org/10.1016/j.ydbio.2019.02.014.
  6. Moulton, J. D. Using Morpholinos to Control Gene Expression. Curr Protoc Nucleic Acid Chem 2007, Chapter 4 (1), Unit 4.30. https://doi.org/10.1002/0471142700.nc0430s27.
  7. NCBI Taxonomy. Danio rerio. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=7955 (accessed 2024-02-27).
  8. Home | Skromne Lab. http://www.skromnelab.com/ (accessed 2024-02-27).
  9. Hints and tips for bathroom design: Spina Bifida - Closomat. https://www.closomat.co.uk/hints-and-tips-for-bathroom-design-spina-bifida/ (accessed 2024-02-27).

Cerium(IV) Mediated Hydrolysis of Cyclic di-GMP and Enhancing Antibiotic Performance
- Saoirse Landers (student speaker)

  1. Barker, H.; Pohrebniak, O. Stages of Biofilm Formation; 2023. https://www.the-scientist.com/infographic-stages-of-biofilm-formation-71140.
  2. Garner, J. P.; Heppell, P. S. J. Cerium Nitrate in the Management of Burns. Burns 2005, 31 (5), 539–547. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_b2f356b256dec016db94d55bd5c404cb. https://doi.org/10.1016/j.burns.2005.01.014.
  3. Johansson, B.; Luo, W.; Li, S.; Ahuja, R. Cerium; Crystal Structure and Position in The Periodic Table. Sci Rep 2014, 4 (1), 6398. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_srep06398. https://doi.org/10.1038/srep06398.
  4. National Center for Biotechnology Information. PubChem Element Summary for AtomicNumber 58, Cerium. PubChem. https://pubchem.ncbi.nlm.nih.gov/element/Cerium (accessed 2024-02-28).
  5. Ryan, R. P. Cyclic Di-GMP Signalling and the Regulation of Bacterial Virulence. Microbiology (Reading) 2013, 159 (Pt 7), 1286–1297. https://doi.org/10.1099/mic.0.068189-0.

Conformationally Flexible Phosphines: Progress Towards the Synthesis of Dibenzaphosphocine Derivatives
- Morgan Labadini (student speaker)

  1. CAS, a division of the American Chemical Society. 2-Furanmethanamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=617-89-0&search=furfurylamine.
  2. CAS, a division of the American Chemical Society. 2,8,9-Trimethyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=120666-13-9.
  3. CAS, a division of the American Chemical Society. 4-Methoxyaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=104-94-9&search=p-anisidine.
  4. CAS, a division of the American Chemical Society. 4-Methylaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=106-49-0&search=p-toluidine.
  5. CAS, a division of the American Chemical Society. Aniline. https://commonchemistry.cas.org/detail?cas_rn=62-53-3&search=aniline.
  6. CAS, a division of the American Chemical Society. Methylamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=74-89-5.
  7. CAS, a division of the American Chemical Society. Trimethylphosphine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=594-09-2.
  8. 24.2: Ligands. In Map: General Chemistry (Petrucci et al); LibreTexts, 2023. https://chem.libretexts.org/@go/page/24351.

Using Nanomaterials for Optimal Halogen Bonding Interactions Within Sensors for Explosives
- Sophie Reiff (student speaker)

  1. Dang, Q. M.; Gilmore, S. T.; Lalwani, K.; Conk, R. J.; Simpson, J. H.; Leopold, M. C. Monolayer-Protected Gold Nanoparticles Functionalized with Halogen Bonding Capability─An Avenue for Molecular Detection Schemes. Langmuir 2022, 38 (15), 4747–4762. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2648064332. https://doi.org/10.1021/acs.langmuir.2c00381.
  2. Dang, Q. M.; Simpson, J. H.; Parish, C. A.; Leopold, M. C. Evaluating Halogen-Bond Strength as a Function of Molecular Structure Using Nuclear Magnetic Resonance Spectroscopy and Computational Analysis. J. Phys. Chem. A 2021, 125 (42), 9377–9393. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_dee70bc0fa68922232fb10fd44f1e8b3. https://doi.org/10.1021/acs.jpca.1c07554.
  3. Furton, K. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives. Talanta 2001, 54 (3), 487–500. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9b1cac7368080077d19f736d5e078b7e. https://doi.org/10.1016/S0039-9140(00)00546-4.
  4. Jaini, A. K. A.; Hughes, L. B.; Kitimet, M. M.; Ulep, K. J.; Leopold, M. C.; Parish, C. A. Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection. ACS Sens. 2019, 4 (2), 389–397. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1610528. https://doi.org/10.1021/acssensors.8b01246.
  5. Senesac, L.; Thundat, T. G. Nanosensors for Trace Explosive Detection. Materials Today 2008, 11 (3), 28–36. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_s1369_7021_08_70017_8. https://doi.org/10.1016/S1369-7021(08)70017-8.
  6. Sherard, M. M.; Dang, Q. M.; Reiff, S. C.; Simpson, J. H.; Leopold, M. C. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen Bonding. ACS Appl. Nano Mater. 2023, 6 (10), 8367–8381. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1021_acsanm_3c00618. https://doi.org/10.1021/acsanm.3c00618.
  7. Zamborini, F. P.; Leopold, M. C.; Hicks, J. F.; Kulesza, P. J.; Malik, M. A.; Murray, R. W. Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles. J. Am. Chem. Soc. 2002, 124 (30), 8958–8964. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_801577783cc3b78022f5b74747d72ea4. https://doi.org/10.1021/ja025965s.

CMT-Causing Mutations in INF2 Lead to Impaired Organelle Function
- Michelle Perales Panduro (student speaker)

  1. Dojindo Laboratories. Lysosomal Acidic pH Detection Kit-Green/Deep Red L268 Product Manual, 2023. https://www.dojindo.com/manual/L268/ (accessed 2024-03-05).
  2. Edgar, J. R.; Ho, A. K.; Laurá, M.; Horvath, R.; Reilly, M. M.; Luzio, J. P.; Roberts, R. C. A Dysfunctional Endolysosomal Pathway Common to Two Sub-Types of Demyelinating Charcot–Marie–Tooth Disease. acta neuropathol commun 2020, 8 (1), 165. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_275f11a6cd874fd9bce07eb7b28c4413.  https://doi.org/10.1186/s40478-020-01043-z.
  3. Hyttinen, J. M. T.; Niittykoski, M.; Salminen, A.; Kaarniranta, K. Maturation of Autophagosomes and Endosomes: A Key Role for Rab7. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1833 (3), 503–510. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_bbamcr_2012_11_018. https://doi.org/10.1016/j.bbamcr.2012.11.018.
  4. Labat-de-Hoz, L.; Alonso, M. A. The Formin INF2 in Disease: Progress from 10 Years of Research. Cell. Mol. Life Sci. 2020, 77 (22), 4581–4600. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_pmid_8ccae9d10f282078167d565c4aa4f41b. https://doi.org/10.1007/s00018-020-03550-7.
  5. National Library of Medicine. Charcot-Marie-Tooth Disease. MedlinePlus. https://medlineplus.gov/charcotmarietoothdisease.html (accessed 2024-03-04).
  6. Ribosome Studio. Formin assisted actin polymerization in real-time. Facebook. https://www.facebook.com/watch/?v=1140927166307237 (accessed 2024-03-04).
  7. UN San Diego School of Biological Sciences. Welcome to the Manor Lab. Manor Lab. https://manorlab.ucsd.edu/ (accessed 2024-03-05).
  8. Valm, A. M.; Cohen, S.; Legant, W. R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A. R.; Davidson, M. W.; Betzig, E.; Lippincott-Schwartz, J. Applying Systems-Level Spectral Imaging and Analysis to Reveal the Organelle Interactome. Nature 2017, 546 (7656), 162–167. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5536967. https://doi.org/10.1038/nature22369.
  9. Salk Institute for Biological Studies. Salk Institute for Biological Studies. https://www.salk.edu/ (accessed 2024-02-29).
  10. Charcot-Marie-Tooth Disease. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/charcot-marie-tooth-disease (accessed 2024-03-04).

Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase
- Annika Wells (student speaker)

  1. Cavalcante, F. T. T.; De A. Falcão, I. R.; Da S. Souza, J. E.; Rocha, T. G.; De Sousa, I. G.; Cavalcante, A. L. G.; De Oliveira, A. L. B.; De Sousa, M. C. M.; Dos Santos, J. C. S. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021, 2 (1), 149–184.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_e225ab9942eb4d749e8942f2184975fb. https://doi.org/10.3390/electrochem2010012.
  2. Gordon, R. Surprising Things Made From Plastic. Recycle Nation. https://recyclenation.com/2015/12/surprising-things-made-from-plastic/ (accessed 2024-03-05).
  3. Jauffred, L.; Munk Vejborg, R.; Korolev, K. S.; Brown, S.; Oddershede, L. B. Chirality in Microbial Biofilms Is Mediated by Close Interactions between the Cell Surface and the Substratum. The ISME Journal 2017, 11 (7), 1688–1701.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_ismej_2017_19. https://doi.org/10.1038/ismej.2017.19.
  4. Singer, M. Bacterium Ideonella Sakaiensis That Gobbles up Plastic May Be Holy Grail in Pollution Battle. Market Business News. March 13, 2016. https://marketbusinessnews.com/bacterium-ideonella-sakaiensis-gobbles-plastic-may-holy-grail-pollution-battle/128307/ (accessed 2024-03-05).
  5. Zhu, B.; Ye, Q.; Seo, Y.; Wei, N. Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase. Environ. Sci. Technol. Lett. 2022, 9 (7), 650–657.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_425eb2f2ab19c4d0fe3063058d59e2b0. https://doi.org/10.1021/acs.estlett.2c00332.
  6. Piscinibacter sakaiensis Taxonomy ID: 1547922. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1547922 (accessed 2024-03-05).

Characterization of MEMO1 Protein-Protein Ineractions
- Haley Salus (student speaker)

  1. Chakraborty, A. A new molecular target for breast cancer therapy. Sanguine Bio Researcher Blog. https://technical.sanguinebio.com/a-new-molecular-target-for-breast-cancer-therapy/ (accessed 2024-03-05).
  2. Newkirk, M. L.; Rubenstein, K. J.; Kim, J. Y.; Labrecque, C. L.; Airas, J.; Taylor, C. A.; Evans, H. D.; McKoy, Q.; Parish, C. A.; Pollock, J. A. Analysis of MEMO1 Binding Specificity for ErbB2 Using Fluorescence Polarization and Molecular Dynamics Simulations. Biochemistry 2018, 57 (34), 5169–5181.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9f09e1c9f5fface612ebdcaf401d4ec3. https://doi.org/10.1021/acs.biochem.8b00582.
  3. Qiu, C. Crystal Structure of Memo, 2007. https://doi.org/10.2210/pdb3BCZ/pdb.
  4. Qiu, C.; Lienhard, S.; Hynes, N. E.; Badache, A.; Leahy, D. J. Memo Is Homologous to Nonheme Iron Dioxygenases and Binds an ErbB2-Derived Phosphopeptide in Its Vestigial Active Site. Journal of Biological Chemistry 2008, 283 (5), 2734–2740.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1006524. https://doi.org/10.1074/jbc.M703523200.
  5. Schotanus, M. D.; Van Otterloo, E. Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease. Genes 2020, 11 (11), 1316.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_20cb4a3236794f1eab33b59775e58b40. https://doi.org/10.3390/genes11111316.
  6. Affinity Purification. AAT Bioquest. https://www.aatbio.com/catalog/affinity-purification (accessed 2024-03-05).
  7. Cancer Stat Facts: Female Breast Cancer. National Cancer Institute. https://seer.cancer.gov/statfacts/html/breast.html (accessed 2024-03-05).

Assessing Human Influence on Ranavirus Transmission in Vulnerable Native Turtle Species
- Parker Ernst (student speaker)

  1. Allender, M. Ranavirus in Chelonians of North America, 2011. https://www.google.com/url?client=internal-element-cse&cx=013876870482878768093:ampshpmfdtu&q=http://fwf.ag.utk.edu/mgray/ranavirus/2011Symposium/Allender.pdf&sa=U&ved=2ahUKEwjX68z2l-CEAxV5D1kFHTi8CvcQFnoECAAQAg&usg=AOvVaw0aHvqfhhQ22183pQ-YwOKQ (accessed 2024-03-06).
  2. Allender, M. C.; Abd-Eldaim, M.; Schumacher, J.; McRuer, D.; Christian, L. S.; Kennedy, M. PCR Prevalence of Ranavirus in Free-Ranging Eastern Box Turtles (Terrapene Carolina Carolina) at Rehabilitation Centers in Three Southeastern US States. Journal of Wildlife Diseases 2011, 47 (3), 759–764.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_3f2e65c1c6c1c9043e4f74dbd76541f2. https://doi.org/10.7589/0090-3558-47.3.759.
  3. Allender, M. C.; Abd-Eldaim, M.; Kuhns, A.; Kennedy, M. Absence of Ranavirus and Herpesvirus in a Survey of Two Aquatic Turtle Species in Illinois. Journal of Herpetological Medicine and Surgery 2009, 19 (1), 16–20.  https://meridian.allenpress.com/jhms/article/19/1/16/137180/Absence-of-Ranavirus-and-Herpesvirus-in-a-Survey?searchresult=1. https://doi.org/10.5818/1529-9651.19.1.16.
  4. Allender, M. C.; Fry, M. M.; Irizarry, A. R.; Craig, L.; Johnson, A. J.; Jones, M. Intracytoplasmic Inclusions in Circulating Leukocytes from an Eastern Box Turtle (Terrapene Carolina Carolina) with Iridoviral Infection. Journal of Wildlife Diseases 2006, 42 (3), 677–684.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_42_3_677. https://doi.org/10.7589/0090-3558-42.3.677.
  5. Bushnell, R. Incurable Ranavirus Discovered in Ontario Turtles. Ontario Nature. https://ontarionature.org/ranavirus-blog/ (accessed 2024-03-06).
  6. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M. J., Chinchar, V. G., Eds.; Springer International Publishing, 2015.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928189582206241. https://doi.org/10.1007/978-3-319-13755-1.
  7. Johnson, A. J.; Pessier, A. P.; Wellehan, J. F. X.; Childress, A.; Norton, T. M.; Stedman, N. L.; Bloom, D. C.; Belzer, W.; Titus, V. R.; Wagner, R.; Brooks, J. W.; Spratt, J.; Jacobson, E. R. Ranavirus Infection of Free-Ranging and Captive Box Turtles and Tortoises in the United States. Journal of Wildlife Diseases 2008, 44 (4), 851–863.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_44_4_851. https://doi.org/10.7589/0090-3558-44.4.851.
  8. Macdonald, B. Smugglers gamble with turtles’ lives, causing disease outbreak. U.S. Fish & Wildlife Service. https://www.fws.gov/story/smugglers-gamble-turtles-lives-causing-disease-outbreak (accessed 2024-03-06).
  9. Macdonald, B. Smuggling act: A U.S. Fish and Wildlife Service special agent joined an international turtle-trafficking ring in order to take it down. U.S. Fish & Wildlife Service. https://www.fws.gov/story/2021-10/international-turtle-trafficking-ring-busted (accessed 2024-03-06).
  10. Sevin, J.; Wixted, K.; Kisonak, L.; Macdonald, B.; Thompson-Slacum, J.; Buchanan, S.; Karraker, N. Turtles in trouble: Trafficking poses conservation concerns for America’s turtles. U.S. Fish & Wildlife Service. https://www.fws.gov/story/joining-forces-combat-turtle-trafficking (accessed 2024-03-06).
  11. van Dijk, P. P. Terrapene Carolina. The IUCN Red List of Threatened Species 2011, e.T21641A97428179. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T21641A9303747.en.
  12. Ranavirus - American College of Veterinary Pathologists. https://www.acvp.org/page/ranavirus (accessed 2024-03-06).

CD46 is a Receptor for Adenovirus
- Alex Robertson (student speaker)

  1. Burrow, M. K.; Patel, B. C. Keratoconjunctivitis. In StatPearls [Internet]; StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK542279/ .
  2. Ghosh, S. Sialic Acid and Biology of Life: An Introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Academic Press, 2020; pp 1–61. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_ebookcentralchapters_6010006_8_28.
  3. Goodsell, D. PDB101: Molecule of the Month: Adenovirus. PDB-101. http://pdb101.rcsb.org/motm/132 (accessed 2024-03-06).
  4. CD46 CD46 Molecule [Homo Sapiens (Human)]. https://www.ncbi.nlm.nih.gov/gene/4179/ (accessed 2024-03-08).
  5. 9.11H: Double-Stranded DNA Viruses- Adenoviruses. In Microbiology (Boundless); 2017. https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Boundless)/09%3A_Viruses/9.11%3A_DNA_Viruses_in_Eukaryotes/9.11H%3A_Double-Stranded_DNA_Viruses-_Adenoviruses

Insights into the extension past 8-oxo-2'-deoxyguanosine with two Y-family polymerases
- Benny Ko (student speaker)

  1. CAS, a division of the American Chemical Society. 8-Hydroxy-2′-deoxyguanosine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=88847-89-6 (accessed 2024-03-08).
  2. DNA Damage; 2010. https://www.youtube.com/watch?v=uN82GLQYAUQ (accessed 2024-03-08).
  3. Hamm, M. L.; Garcia, A. A.; Gilbert, R.; Johri, M.; Ricart, M.; Sholes, S. L.; Murray-Nerger, L. A.; Wu, E. Y. The Importance of Ile716 toward the Mutagenicity of 8-Oxo-2’-Deoxyguanosine with Bacillus Fragment DNA Polymerase. DNA Repair 2020, 89, 102826. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_4612dc9af8f2a98dd2ad472452a2a0e8. https://doi.org/10.1016/j.dnarep.2020.102826.

Down regulation of oxidative stress regulator in Machado-Joseph Disease
- Midhun Sree Manoj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Yibing Lu (student speaker)

  • Selected Resources Coming Soon

Molecular dynamics of NMDA receptors
- Ismar Alickovic (student speaker)

  • Selected Resources Coming Soon

Genetics of an invasive fruit fly
- Michelle Pogrebetskaya (student speaker)

  • Selected Resources Coming Soon

Interaction between CD46 and adenovirus
- Henry Zhu (student speaker)

  • Selected Resources Coming Soon

Incorporation of an unnatural amino acid in MEMO1
- Sonia Mecoripaj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Jialin Chen(student speaker)

  • Selected Resources Coming Soon

Measurement of electrophysiology and kinetics of ion channels
- Ian Shogren (student speaker)

  • Selected Resources Coming Soon

BMB Seminar Presentations Archives

Over the following tabs, you will find the BMB Seminar listings from previous semesters. 

Copper-Catalyzed Synthesis of S-S Bond-Containing Silanols from SCBs and Trisulfide-1,1-dioxides : Article Unpacking
- Sopheak Pa

Dative Bonding.........
- Aamy Bakry

Out of respect for the publication process, this section is intentionally left blank.

Friedel-Crafts Alkylation of Indoles and Benzofurans with Secondary Acelates and Tertiary Alcohols
- Helen Xia

Investigation of Plasmodium Hsp90 as a target for antimalarials
- Elizabeth Taggart

Structural phylogenetics of A family DNA polymerases
- Yagmur Bingul

Diaryl Oxazoles: Oxidatively Cleavable Linkers for Small Molecule Drug Discovery Platforms
- Evan Wolff

Ruthenium Polypyridyl Complexes Investigated as Potential Photoactivated Chemotherapy Agents
- Yuna Chung

Exploration of Heterocycles as Peptide-Based Cleavable Linkers
- John Blobe

CD46 Isoforms & Ad.64 Viral Binding
Corina Stasiak

Halogen-Bonding Capable Functionalized Gold Naoparticle Molecular Detection Schemes
- Mackey Sherard

Cdx1a: An Underdog Story
- Jackie Bisso

Synthesis, Characterization, and Catalytic Analysis of Copper(I) Proazaphosphatrene Complexes
- Billy Apostolou

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.