Skip to Main Content

Boatwright Memorial Library

Spring 2024 BMB Presentations

These presentations come from the BMB Seminar Series. 

Under each presentation:

 you will find related resources curated by the science librarian. These resources might be broad overviews of topics or they might be specific. They are meant to serve as a starting point. 

Want to just see all the resources at once? Check out the Zotero Folder for BMB Seminar Presentations

*Zotero Folder reflects updates quickest*

Oxazoles: Oxidatively Cleavable Linkers for Peptide Discovery Platforms
- Pamira Yanar (student speaker)

  1. Beck, H.; Härter, M.; Haß, B.; Schmeck, C.; Baerfacker, L. Small Molecules and Their Impact in Drug Discovery: A Perspective on the Occasion of the 125th Anniversary of the Bayer Chemical Research Laboratory. Drug Discovery Today 2022, 27 (6), 1560–1574. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_drudis_2022_02_015. https://doi.org/10.1016/j.drudis.2022.02.015.
  2. Denton, E. What is solid phase peptide synthesis? https://www.biotage.com/blog/what-is-solid-phase-peptide-synthesis (accessed 2024-02-06).
  3. DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. Journal of Health Economics 2016, 47, 20–33. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_6272db6adc3d064064123401da5e71a0. https://doi.org/10.1016/j.jhealeco.2016.01.012.
  4. Center for Drug Evaluation and Research. Standard Costs (in Thousands of Dollars) for Components of the Process for the Review of Human Drug Applications. FDA 2019https://www.fda.gov/industry/prescription-drug-user-fee-amendments/standard-costs-thousands-dollars-components-process-review-human-drug-applications.
  5. Rössler, S. L.; Grob, N. M.; Buchwald, S. L.; Pentelute, B. L. Abiotic Peptides as Carriers of Information for the Encoding of Small-Molecule Library Synthesis. Science 2023, 379 (6635), 939–945. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2783498263. https://doi.org/10.1126/science.adf1354.
  6. Sarkar, M.; Pascal, B. D.; Steckler, C.; Aquino, C.; Micalizio, G. C.; Kodadek, T.; Chalmers, M. J. Decoding Split and Pool Combinatorial Libraries with Electron-Transfer Dissociation Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24 (7), 1026–1036. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455952. https://doi.org/10.1007/s13361-013-0633-x.
  7. Shugrue Lab. University of Richmond. https://blog.richmond.edu/shugruelab/ (accessed 2024-01-23).

Functional Analysis of Retinoic Acis Receptors (RAR) in the Development of Zebrafish Hindbrain and Spinal Chord
- Lauren Knopp (student speaker)

  1. Bradford, Y. ZFIN Database Information. Zebrafish Information Network. https://zfin.atlassian.net/wiki/spaces/general/pages/1891415775/ZFIN+Database+Information (accessed 2024-02-28).
  2. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications; Cartner, S. C., Ed.; American College of Laboratory Animal Medicine; Academic Press: London ; San Diego, CA, 2019. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928388343606241.
  3. CAS, a division of the American Chemical Society. Retinoic acid. https://commonchemistry.cas.org/detail?cas_rn=302-79-4 (accessed 2024-02-28). .
  4. Detrich, H. W.; Westerfield, M.; Zon, L. I. The Zebrafish: Cellular and Developmental Biology, 2nd ed.; Methods in cell biology; Elsevier/Academic Press: Amsterdam Boston, 2004. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928073356106241.
  5. Joshi, P.; Darr, A. J.; Skromne, I. CDX4 Regulates the Progression of Neural Maturation in the Spinal Cord. Developmental Biology 2019, 449 (2), 132–142. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_j_ydbio_2019_02_014. https://doi.org/10.1016/j.ydbio.2019.02.014.
  6. Moulton, J. D. Using Morpholinos to Control Gene Expression. Curr Protoc Nucleic Acid Chem 2007, Chapter 4 (1), Unit 4.30. https://doi.org/10.1002/0471142700.nc0430s27.
  7. NCBI Taxonomy. Danio rerio. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=7955 (accessed 2024-02-27).
  8. Home | Skromne Lab. http://www.skromnelab.com/ (accessed 2024-02-27).
  9. Hints and tips for bathroom design: Spina Bifida - Closomat. https://www.closomat.co.uk/hints-and-tips-for-bathroom-design-spina-bifida/ (accessed 2024-02-27).

Cerium(IV) Mediated Hydrolysis of Cyclic di-GMP and Enhancing Antibiotic Performance
- Saoirse Landers (student speaker)

  1. Barker, H.; Pohrebniak, O. Stages of Biofilm Formation; 2023. https://www.the-scientist.com/infographic-stages-of-biofilm-formation-71140.
  2. Garner, J. P.; Heppell, P. S. J. Cerium Nitrate in the Management of Burns. Burns 2005, 31 (5), 539–547. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_b2f356b256dec016db94d55bd5c404cb. https://doi.org/10.1016/j.burns.2005.01.014.
  3. Johansson, B.; Luo, W.; Li, S.; Ahuja, R. Cerium; Crystal Structure and Position in The Periodic Table. Sci Rep 2014, 4 (1), 6398. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_srep06398. https://doi.org/10.1038/srep06398.
  4. National Center for Biotechnology Information. PubChem Element Summary for AtomicNumber 58, Cerium. PubChem. https://pubchem.ncbi.nlm.nih.gov/element/Cerium (accessed 2024-02-28).
  5. Ryan, R. P. Cyclic Di-GMP Signalling and the Regulation of Bacterial Virulence. Microbiology (Reading) 2013, 159 (Pt 7), 1286–1297. https://doi.org/10.1099/mic.0.068189-0.

Conformationally Flexible Phosphines: Progress Towards the Synthesis of Dibenzaphosphocine Derivatives
- Morgan Labadini (student speaker)

  1. CAS, a division of the American Chemical Society. 2-Furanmethanamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=617-89-0&search=furfurylamine.
  2. CAS, a division of the American Chemical Society. 2,8,9-Trimethyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=120666-13-9.
  3. CAS, a division of the American Chemical Society. 4-Methoxyaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=104-94-9&search=p-anisidine.
  4. CAS, a division of the American Chemical Society. 4-Methylaniline. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=106-49-0&search=p-toluidine.
  5. CAS, a division of the American Chemical Society. Aniline. https://commonchemistry.cas.org/detail?cas_rn=62-53-3&search=aniline.
  6. CAS, a division of the American Chemical Society. Methylamine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=74-89-5.
  7. CAS, a division of the American Chemical Society. Trimethylphosphine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=594-09-2.
  8. 24.2: Ligands. In Map: General Chemistry (Petrucci et al); LibreTexts, 2023. https://chem.libretexts.org/@go/page/24351.

Using Nanomaterials for Optimal Halogen Bonding Interactions Within Sensors for Explosives
- Sophie Reiff (student speaker)

  1. Dang, Q. M.; Gilmore, S. T.; Lalwani, K.; Conk, R. J.; Simpson, J. H.; Leopold, M. C. Monolayer-Protected Gold Nanoparticles Functionalized with Halogen Bonding Capability─An Avenue for Molecular Detection Schemes. Langmuir 2022, 38 (15), 4747–4762. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_miscellaneous_2648064332. https://doi.org/10.1021/acs.langmuir.2c00381.
  2. Dang, Q. M.; Simpson, J. H.; Parish, C. A.; Leopold, M. C. Evaluating Halogen-Bond Strength as a Function of Molecular Structure Using Nuclear Magnetic Resonance Spectroscopy and Computational Analysis. J. Phys. Chem. A 2021, 125 (42), 9377–9393. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_dee70bc0fa68922232fb10fd44f1e8b3. https://doi.org/10.1021/acs.jpca.1c07554.
  3. Furton, K. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives. Talanta 2001, 54 (3), 487–500. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9b1cac7368080077d19f736d5e078b7e. https://doi.org/10.1016/S0039-9140(00)00546-4.
  4. Jaini, A. K. A.; Hughes, L. B.; Kitimet, M. M.; Ulep, K. J.; Leopold, M. C.; Parish, C. A. Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection. ACS Sens. 2019, 4 (2), 389–397. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1610528. https://doi.org/10.1021/acssensors.8b01246.
  5. Senesac, L.; Thundat, T. G. Nanosensors for Trace Explosive Detection. Materials Today 2008, 11 (3), 28–36. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1016_s1369_7021_08_70017_8. https://doi.org/10.1016/S1369-7021(08)70017-8.
  6. Sherard, M. M.; Dang, Q. M.; Reiff, S. C.; Simpson, J. H.; Leopold, M. C. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen Bonding. ACS Appl. Nano Mater. 2023, 6 (10), 8367–8381. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1021_acsanm_3c00618. https://doi.org/10.1021/acsanm.3c00618.
  7. Zamborini, F. P.; Leopold, M. C.; Hicks, J. F.; Kulesza, P. J.; Malik, M. A.; Murray, R. W. Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles. J. Am. Chem. Soc. 2002, 124 (30), 8958–8964. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_801577783cc3b78022f5b74747d72ea4. https://doi.org/10.1021/ja025965s.

CMT-Causing Mutations in INF2 Lead to Impaired Organelle Function
- Michelle Perales Panduro (student speaker)

  1. Dojindo Laboratories. Lysosomal Acidic pH Detection Kit-Green/Deep Red L268 Product Manual, 2023. https://www.dojindo.com/manual/L268/ (accessed 2024-03-05).
  2. Edgar, J. R.; Ho, A. K.; Laurá, M.; Horvath, R.; Reilly, M. M.; Luzio, J. P.; Roberts, R. C. A Dysfunctional Endolysosomal Pathway Common to Two Sub-Types of Demyelinating Charcot–Marie–Tooth Disease. acta neuropathol commun 2020, 8 (1), 165. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_275f11a6cd874fd9bce07eb7b28c4413.  https://doi.org/10.1186/s40478-020-01043-z.
  3. Hyttinen, J. M. T.; Niittykoski, M.; Salminen, A.; Kaarniranta, K. Maturation of Autophagosomes and Endosomes: A Key Role for Rab7. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1833 (3), 503–510. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_crossref_primary_10_1016_j_bbamcr_2012_11_018. https://doi.org/10.1016/j.bbamcr.2012.11.018.
  4. Labat-de-Hoz, L.; Alonso, M. A. The Formin INF2 in Disease: Progress from 10 Years of Research. Cell. Mol. Life Sci. 2020, 77 (22), 4581–4600. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_pmid_8ccae9d10f282078167d565c4aa4f41b. https://doi.org/10.1007/s00018-020-03550-7.
  5. National Library of Medicine. Charcot-Marie-Tooth Disease. MedlinePlus. https://medlineplus.gov/charcotmarietoothdisease.html (accessed 2024-03-04).
  6. Ribosome Studio. Formin assisted actin polymerization in real-time. Facebook. https://www.facebook.com/watch/?v=1140927166307237 (accessed 2024-03-04).
  7. UN San Diego School of Biological Sciences. Welcome to the Manor Lab. Manor Lab. https://manorlab.ucsd.edu/ (accessed 2024-03-05).
  8. Valm, A. M.; Cohen, S.; Legant, W. R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A. R.; Davidson, M. W.; Betzig, E.; Lippincott-Schwartz, J. Applying Systems-Level Spectral Imaging and Analysis to Reveal the Organelle Interactome. Nature 2017, 546 (7656), 162–167. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5536967. https://doi.org/10.1038/nature22369.
  9. Salk Institute for Biological Studies. Salk Institute for Biological Studies. https://www.salk.edu/ (accessed 2024-02-29).
  10. Charcot-Marie-Tooth Disease. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/charcot-marie-tooth-disease (accessed 2024-03-04).

Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase
- Annika Wells (student speaker)

  1. Cavalcante, F. T. T.; De A. Falcão, I. R.; Da S. Souza, J. E.; Rocha, T. G.; De Sousa, I. G.; Cavalcante, A. L. G.; De Oliveira, A. L. B.; De Sousa, M. C. M.; Dos Santos, J. C. S. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021, 2 (1), 149–184.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_e225ab9942eb4d749e8942f2184975fb. https://doi.org/10.3390/electrochem2010012.
  2. Gordon, R. Surprising Things Made From Plastic. Recycle Nation. https://recyclenation.com/2015/12/surprising-things-made-from-plastic/ (accessed 2024-03-05).
  3. Jauffred, L.; Munk Vejborg, R.; Korolev, K. S.; Brown, S.; Oddershede, L. B. Chirality in Microbial Biofilms Is Mediated by Close Interactions between the Cell Surface and the Substratum. The ISME Journal 2017, 11 (7), 1688–1701.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_1038_ismej_2017_19. https://doi.org/10.1038/ismej.2017.19.
  4. Singer, M. Bacterium Ideonella Sakaiensis That Gobbles up Plastic May Be Holy Grail in Pollution Battle. Market Business News. March 13, 2016. https://marketbusinessnews.com/bacterium-ideonella-sakaiensis-gobbles-plastic-may-holy-grail-pollution-battle/128307/ (accessed 2024-03-05).
  5. Zhu, B.; Ye, Q.; Seo, Y.; Wei, N. Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase. Environ. Sci. Technol. Lett. 2022, 9 (7), 650–657.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_425eb2f2ab19c4d0fe3063058d59e2b0. https://doi.org/10.1021/acs.estlett.2c00332.
  6. Piscinibacter sakaiensis Taxonomy ID: 1547922. Taxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1547922 (accessed 2024-03-05).

Characterization of MEMO1 Protein-Protein Ineractions
- Haley Salus (student speaker)

  1. Chakraborty, A. A new molecular target for breast cancer therapy. Sanguine Bio Researcher Blog. https://technical.sanguinebio.com/a-new-molecular-target-for-breast-cancer-therapy/ (accessed 2024-03-05).
  2. Newkirk, M. L.; Rubenstein, K. J.; Kim, J. Y.; Labrecque, C. L.; Airas, J.; Taylor, C. A.; Evans, H. D.; McKoy, Q.; Parish, C. A.; Pollock, J. A. Analysis of MEMO1 Binding Specificity for ErbB2 Using Fluorescence Polarization and Molecular Dynamics Simulations. Biochemistry 2018, 57 (34), 5169–5181.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_9f09e1c9f5fface612ebdcaf401d4ec3. https://doi.org/10.1021/acs.biochem.8b00582.
  3. Qiu, C. Crystal Structure of Memo, 2007. https://doi.org/10.2210/pdb3BCZ/pdb.
  4. Qiu, C.; Lienhard, S.; Hynes, N. E.; Badache, A.; Leahy, D. J. Memo Is Homologous to Nonheme Iron Dioxygenases and Binds an ErbB2-Derived Phosphopeptide in Its Vestigial Active Site. Journal of Biological Chemistry 2008, 283 (5), 2734–2740.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_osti_scitechconnect_1006524. https://doi.org/10.1074/jbc.M703523200.
  5. Schotanus, M. D.; Van Otterloo, E. Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease. Genes 2020, 11 (11), 1316.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_doaj_primary_oai_doaj_org_article_20cb4a3236794f1eab33b59775e58b40. https://doi.org/10.3390/genes11111316.
  6. Affinity Purification. AAT Bioquest. https://www.aatbio.com/catalog/affinity-purification (accessed 2024-03-05).
  7. Cancer Stat Facts: Female Breast Cancer. National Cancer Institute. https://seer.cancer.gov/statfacts/html/breast.html (accessed 2024-03-05).

Assessing Human Influence on Ranavirus Transmission in Vulnerable Native Turtle Species
- Parker Ernst (student speaker)

  1. Allender, M. Ranavirus in Chelonians of North America, 2011. https://www.google.com/url?client=internal-element-cse&cx=013876870482878768093:ampshpmfdtu&q=http://fwf.ag.utk.edu/mgray/ranavirus/2011Symposium/Allender.pdf&sa=U&ved=2ahUKEwjX68z2l-CEAxV5D1kFHTi8CvcQFnoECAAQAg&usg=AOvVaw0aHvqfhhQ22183pQ-YwOKQ (accessed 2024-03-06).
  2. Allender, M. C.; Abd-Eldaim, M.; Schumacher, J.; McRuer, D.; Christian, L. S.; Kennedy, M. PCR Prevalence of Ranavirus in Free-Ranging Eastern Box Turtles (Terrapene Carolina Carolina) at Rehabilitation Centers in Three Southeastern US States. Journal of Wildlife Diseases 2011, 47 (3), 759–764.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_3f2e65c1c6c1c9043e4f74dbd76541f2. https://doi.org/10.7589/0090-3558-47.3.759.
  3. Allender, M. C.; Abd-Eldaim, M.; Kuhns, A.; Kennedy, M. Absence of Ranavirus and Herpesvirus in a Survey of Two Aquatic Turtle Species in Illinois. Journal of Herpetological Medicine and Surgery 2009, 19 (1), 16–20.  https://meridian.allenpress.com/jhms/article/19/1/16/137180/Absence-of-Ranavirus-and-Herpesvirus-in-a-Survey?searchresult=1. https://doi.org/10.5818/1529-9651.19.1.16.
  4. Allender, M. C.; Fry, M. M.; Irizarry, A. R.; Craig, L.; Johnson, A. J.; Jones, M. Intracytoplasmic Inclusions in Circulating Leukocytes from an Eastern Box Turtle (Terrapene Carolina Carolina) with Iridoviral Infection. Journal of Wildlife Diseases 2006, 42 (3), 677–684.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_42_3_677. https://doi.org/10.7589/0090-3558-42.3.677.
  5. Bushnell, R. Incurable Ranavirus Discovered in Ontario Turtles. Ontario Nature. https://ontarionature.org/ranavirus-blog/ (accessed 2024-03-06).
  6. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Gray, M. J., Chinchar, V. G., Eds.; Springer International Publishing, 2015.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/191gg5k/alma9928189582206241. https://doi.org/10.1007/978-3-319-13755-1.
  7. Johnson, A. J.; Pessier, A. P.; Wellehan, J. F. X.; Childress, A.; Norton, T. M.; Stedman, N. L.; Bloom, D. C.; Belzer, W.; Titus, V. R.; Wagner, R.; Brooks, J. W.; Spratt, J.; Jacobson, E. R. Ranavirus Infection of Free-Ranging and Captive Box Turtles and Tortoises in the United States. Journal of Wildlife Diseases 2008, 44 (4), 851–863.  https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_unpaywall_primary_10_7589_0090_3558_44_4_851. https://doi.org/10.7589/0090-3558-44.4.851.
  8. Macdonald, B. Smugglers gamble with turtles’ lives, causing disease outbreak. U.S. Fish & Wildlife Service. https://www.fws.gov/story/smugglers-gamble-turtles-lives-causing-disease-outbreak (accessed 2024-03-06).
  9. Macdonald, B. Smuggling act: A U.S. Fish and Wildlife Service special agent joined an international turtle-trafficking ring in order to take it down. U.S. Fish & Wildlife Service. https://www.fws.gov/story/2021-10/international-turtle-trafficking-ring-busted (accessed 2024-03-06).
  10. Sevin, J.; Wixted, K.; Kisonak, L.; Macdonald, B.; Thompson-Slacum, J.; Buchanan, S.; Karraker, N. Turtles in trouble: Trafficking poses conservation concerns for America’s turtles. U.S. Fish & Wildlife Service. https://www.fws.gov/story/joining-forces-combat-turtle-trafficking (accessed 2024-03-06).
  11. van Dijk, P. P. Terrapene Carolina. The IUCN Red List of Threatened Species 2011, e.T21641A97428179. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T21641A9303747.en.
  12. Ranavirus - American College of Veterinary Pathologists. https://www.acvp.org/page/ranavirus (accessed 2024-03-06).

CD46 is a Receptor for Adenovirus
- Alex Robertson (student speaker)

  1. Burrow, M. K.; Patel, B. C. Keratoconjunctivitis. In StatPearls [Internet]; StatPearls Publishing, 2023. https://www.ncbi.nlm.nih.gov/books/NBK542279/ .
  2. Ghosh, S. Sialic Acid and Biology of Life: An Introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Academic Press, 2020; pp 1–61. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_proquest_ebookcentralchapters_6010006_8_28.
  3. Goodsell, D. PDB101: Molecule of the Month: Adenovirus. PDB-101. http://pdb101.rcsb.org/motm/132 (accessed 2024-03-06).
  4. CD46 CD46 Molecule [Homo Sapiens (Human)]. https://www.ncbi.nlm.nih.gov/gene/4179/ (accessed 2024-03-08).
  5. 9.11H: Double-Stranded DNA Viruses- Adenoviruses. In Microbiology (Boundless); 2017. https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(Boundless)/09%3A_Viruses/9.11%3A_DNA_Viruses_in_Eukaryotes/9.11H%3A_Double-Stranded_DNA_Viruses-_Adenoviruses

Insights into the extension past 8-oxo-2'-deoxyguanosine with two Y-family polymerases
- Benny Ko (student speaker)

  1. CAS, a division of the American Chemical Society. 8-Hydroxy-2′-deoxyguanosine. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=88847-89-6 (accessed 2024-03-08).
  2. DNA Damage; 2010. https://www.youtube.com/watch?v=uN82GLQYAUQ (accessed 2024-03-08).
  3. Hamm, M. L.; Garcia, A. A.; Gilbert, R.; Johri, M.; Ricart, M.; Sholes, S. L.; Murray-Nerger, L. A.; Wu, E. Y. The Importance of Ile716 toward the Mutagenicity of 8-Oxo-2’-Deoxyguanosine with Bacillus Fragment DNA Polymerase. DNA Repair 2020, 89, 102826. https://richmond.primo.exlibrisgroup.com/permalink/01URICH_INST/10lhjt5/cdi_openaire_primary_doi_dedup_4612dc9af8f2a98dd2ad472452a2a0e8. https://doi.org/10.1016/j.dnarep.2020.102826.

Down regulation of oxidative stress regulator in Machado-Joseph Disease
- Midhun Sree Manoj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Yibing Lu (student speaker)

  • Selected Resources Coming Soon

Molecular dynamics of NMDA receptors
- Ismar Alickovic (student speaker)

  • Selected Resources Coming Soon

Genetics of an invasive fruit fly
- Michelle Pogrebetskaya (student speaker)

  • Selected Resources Coming Soon

Interaction between CD46 and adenovirus
- Henry Zhu (student speaker)

  • Selected Resources Coming Soon

Incorporation of an unnatural amino acid in MEMO1
- Sonia Mecoripaj (student speaker)

  • Selected Resources Coming Soon

Currently Untitled
- Jialin Chen(student speaker)

  • Selected Resources Coming Soon

Measurement of electrophysiology and kinetics of ion channels
- Ian Shogren (student speaker)

  • Selected Resources Coming Soon

BMB Seminar Presentations Archives

Over the following tabs, you will find the BMB Seminar listings from previous semesters. 

Copper-Catalyzed Synthesis of S-S Bond-Containing Silanols from SCBs and Trisulfide-1,1-dioxides : Article Unpacking
- Sopheak Pa

Dative Bonding.........
- Aamy Bakry

Out of respect for the publication process, this section is intentionally left blank.

Friedel-Crafts Alkylation of Indoles and Benzofurans with Secondary Acelates and Tertiary Alcohols
- Helen Xia

Investigation of Plasmodium Hsp90 as a target for antimalarials
- Elizabeth Taggart

Structural phylogenetics of A family DNA polymerases
- Yagmur Bingul

Diaryl Oxazoles: Oxidatively Cleavable Linkers for Small Molecule Drug Discovery Platforms
- Evan Wolff

Ruthenium Polypyridyl Complexes Investigated as Potential Photoactivated Chemotherapy Agents
- Yuna Chung

Exploration of Heterocycles as Peptide-Based Cleavable Linkers
- John Blobe

CD46 Isoforms & Ad.64 Viral Binding
Corina Stasiak

Halogen-Bonding Capable Functionalized Gold Naoparticle Molecular Detection Schemes
- Mackey Sherard

Cdx1a: An Underdog Story
- Jackie Bisso

Synthesis, Characterization, and Catalytic Analysis of Copper(I) Proazaphosphatrene Complexes
- Billy Apostolou